
VisionPro 3D-Locate

Developer’s Guide

January 5, 2015

The software described in this document is furnished under license, and may be used or copied only in accordance with
the terms of such license and with the inclusion of the copyright notice shown on this page. Neither the software, this
document, nor any copies thereof may be provided to or otherwise made available to anyone other than the licensee. Title
to and ownership of this software remains with Cognex Corporation or its licensor.

Cognex Corporation assumes no responsibility for the use or reliability of its software on equipment that is not supplied by
Cognex Corporation. Cognex Corporation makes no warranties, either express or implied, regarding the described
software, its merchantability or its fitness for any particular purpose.

The information in this document is subject to change without notice and should not be construed as a commitment by
Cognex Corporation. Cognex Corporation is not responsible for any errors that may be present in either this document or
the associated software.

Copyright © 2015 Cognex Corporation
All Rights Reserved

Printed in U.S.A.

This document may not be copied in whole or in part, nor transferred to any other media or language, without the written
permission of Cognex Corporation.

Portions of the hardware and software provided by Cognex may be covered by one or more of the U.S. and foreign
patents listed below as well as pending U.S. and foreign patents. Such pending U.S. and foreign patents issued after the
date of this document are listed on Cognex web site at http://www.cognex.com/patents.

CVL

5495537, 5548326, 5583954, 5602937, 5640200, 5717785, 5751853, 5768443, 5825483, 5825913, 5850466, 5859923,
5872870, 5901241, 5943441, 5949905, 5978080, 5987172, 5995648, 6002793, 6005978, 6064388, 6067379, 6075881,
6137893, 6141033, 6157732, 6167150, 6215915, 6240208, 6240218, 6324299, 6381366, 6381375, 6408109, 6411734,
6421458, 6457032, 6459820, 6490375, 6516092, 6563324, 6658145, 6687402, 6690842, 6718074, 6748110, 6751361,
6771808, 6798925, 6804416, 6836567, 6850646, 6856698, 6920241, 6959112, 6975764, 6985625, 6993177, 6993192,
7006712, 7016539, 7043081, 7058225, 7065262, 7088862, 7164796, 7190834, 7242801, 7251366, EP0713593,
JP3522280, JP3927239

VGR

5495537, 5602937, 5640200, 5768443, 5825483, 5850466, 5859923, 5949905, 5978080, 5995648, 6002793, 6005978,
6075881, 6137893, 6141033, 6157732, 6167150, 6215915, 6324299, 6381375, 6408109, 6411734, 6421458, 6457032,
6459820, 6490375, 6516092, 6563324, 6658145, 6690842, 6748110, 6751361, 6771808, 6804416, 6836567, 6850646,
6856698, 6959112, 6975764, 6985625, 6993192, 7006712, 7016539, 7043081, 7058225, 7065262, 7088862, 7164796,
7190834, 7242801, 7251366

OMNIVIEW

6215915, 6381375, 6408109, 6421458, 6457032, 6459820, 6594623, 6804416, 6959112, 7383536

The following are registered trademarks of Cognex Corporation:

acuCoder acuFinder acuReader acuWin BGAII Checkpoint
Cognex Cognex, Vision for Industry CVC-1000 CVL DisplayInspect
ID Expert PasteInspect PatFind PatFlex PatInspect PatMax
PatQuick PixelProbe SMD4 Virtual Checksum VisionLinx VisionPro
VisionX

Other Cognex products, tools, or other trade names may be considered common law trademarks of Cognex Corporation.
These trademarks may be marked with a "™". Other product and company names mentioned herein may be the
trademarks of their respective owners.

Contents

Preface ... 7

Style Conventions Used in This Manual .. 7

Microsoft Windows Support ... 7

Software Diagramming Conventions ... 8

About This Manual ... 9

Cognex Offices .. 10

Chapter 1: 3D Vision Overview .. 11

Some Useful Definitions ... 12

3D Calibration .. 14
How Does 3D Calibration Work? .. 15

Calibration Plate Requirements ... 16
Single-Fiducial Checkerboard Plates ... 16
DataMatrix Checkerboard Plates ... 17

Plate Poses .. 19
3D Calibration Coordinate Spaces .. 20

Additional Spaces .. 23
Multi-Camera Calibration ... 25

Triangulation .. 28

Estimating 3D Object Pose .. 30
3D Model .. 30
Direct 3D Pose Estimation .. 31
Feature Correspondence ... 32

Using Feature Correspondences for Pose Estimation 33
Multi-Camera Direct 3D Pose Estimation 35
Multiple Parts .. 37
Non-Point 3D Features ... 37

Using Feature Correspondences to Generate 3D Models 38

Robot (Hand-Eye) Calibration .. 39
Calibration Phase ... 40

Calibration Outputs ... 42

Chapter 2: 3D Shapes, Graphics and Transforms ... 45

Some Useful Definitions ... 46

3D Shapes ... 47
3D Shape Class Architecture ... 47
3D Shape State Type .. 48
3D Shape Geometric Operations ... 49
Projecting 3D Shapes for Display ... 49

Projection Shape Representation .. 50
VisionPro 3D-Locate Developer’s Guide 3

Contents
3D Transformations .. 51
3D Rigid Transforms ... 51
3D Rotation ... 52

3D Fitting .. 53

Chapter 3: 3D Calibration Tools ... 55

Some Useful Definitions ... 56

3D Calibration Basics .. 58

3D Camera Calibration .. 61
Camera Positioning .. 62
Acquiring the Viewsets ... 63

Acquiring the Tilted Viewsets (Required) .. 64
Elevated Viewsets (Optional) .. 65
World Origin Viewset (Required) ... 67

Computing Correspondence Pairs ... 67
Calibrating .. 67

VisionPro 3D-Locate Calibration ... 67
Intrinsic and Extrinsic Calibration Data ... 68
Specifying a New 3D Physical Space ... 68

Assessing the Calibration Quality ... 69
Interpreting Residual Error Data at Calibration Time 69
Using the Calibration Validation Tool .. 70

Hand-Eye Calibration ... 71
Stationary Camera/Moving Plate Calibration ... 72

Hand-Eye Calibration Procedures .. 74
Moving Camera/Stationary Plate Calibration ... 76
Stationary Camera/Moving Plate Calibration ... 77
Motion Requirements .. 77

Residual Error ... 78

.NET Classes and Sample Code ... 79
3D Camera Calibration ... 79

Sample Code ... 79
Hand-Eye Calibration ... 79

Sample Code ... 79

Chapter 4: Locating Objects in 3D ... 81

Some Useful Definitions ... 82

3D Vision Applications ... 83
3D Application Architecture ... 84

Setup-Time Data Generation ... 84
2D Processing ... 85
3D Processing ... 85
4 VisionPro 3D-Locate Developer’s Guide

Contents
2D Part Location and 2D Feature Location ... 86
2D Part Location ... 86
2D Feature Location ... 87

2D Image Feature to 3D Model Feature Correspondence 89
Creation Algorithm .. 90
Properties ... 91

FeatureModel3DIndex ... 91
FeatureModel3DType .. 92
Subfeature ... 92
CameraIndex ... 93
PartInstanceIndex ... 94
FeatureRaw2D ... 95

3D Models .. 96
3D Model Features ... 96
3D Model Creation .. 97
Image Sets .. 98
Lines and Line Segments ... 99

Line Segment Endpoints ... 100
Edges Parallel To Baseline .. 101

Part Correspondence .. 103
Non-Unified and Unified ... 105
Cog3DPartCorresponderUsing2DPoses .. 105
Part Correspondence Method of Cog3DPartCorresponderUsingCrsp2D3Ds ..
106
Outside the Field of View .. 106
Coverage Property ... 109

3D Pose Estimation .. 110
Pose Estimation Strategies ... 111

Using All Features Strategy ... 111
Using Robust Parameters Strategy ... 112

Pose Estimation Results ... 113
Pose Results .. 114
Refining an Initial Pose Strategy .. 114
VisionPro 3D-Locate Developer’s Guide 5

Contents
6 VisionPro 3D-Locate Developer’s Guide

Preface
This manual describes how the VisionPro 3D-Locate programming interface works and
how you use them to solve vision applications.

Style Conventions Used in This Manual
This manual uses the following style conventions for text:

Microsoft Windows Support
Cognex VisionPro software runs on different Microsoft Windows operating systems. In
this documentation set, these are abbreviated to Windows unless there is a feature
specific to one of the variants. Consult the VisionPro Quick Reference, available in
hardcopy or online from the Start menu, for details on the operating systems, hardware,
and software supported by that release.

boldface Used for .NET keywords, function names,
class names, structures, enumerations,
types, and macros. Also used for user
interface elements such as button names,
dialog box names, and menu choices.

italic Used for names of variables, data members,
arguments, enumerations, constants,
program names, file names. Used for names
of books, chapters, and sections.
Occasionally used for emphasis.

courier Used for .NET code examples and for
examples of program output.

bold courier Used in illustrations of command sessions to
show the commands that you would type.

<italic> When enclosed in angle brackets, used to
indicate keyboard keys such as <Tab> or
<Enter>.
VisionPro 3D-Locate Developer’s Guide 7

Preface
Software Diagramming Conventions
This manual uses the following symbols in class diagrams:

• Classes are shown as a box with the class name centered inside the box. For
example, a class A with the C++ declaration

class A{};

is shown graphically as follows:

• Inheritance relationships between classes are shown using solid-line arrows from
the derived class to the base class with a large, hollow triangle pointing toward the
base class. For example, a class B that inherits from a class A with the declaration

class B : public A {};

is shown graphically as follows:

A

A

B

8 VisionPro 3D-Locate Developer’s Guide

Preface
• Template classes are shown as a class box with a smaller, dotted-line rectangle
representing the template parameter superimposed on the upper right corner of the
class box. For example, a template class C with a parameter of type class T with
the declaration:

template <class T>
class C{};

is shown graphically as follows:

These symbols are based on the Unified Modeling Language (UML), a standard
graphical notation for object-oriented analysis and design. See the latest OMG Unified
Modeling Language Specification (available from the Object Management Group at
http://www.omg.org) for more information.

About This Manual
Detailed information about VisionPro 3D-Locate API is provided in the following
chapters:

• 3D Vision Overview introduces concepts related to 3D coordinate spaces,
calibration and triangulation.

• 3D Shapes, Graphics and Transforms describes the mathematical foundations for
3D vision, including transformations and pose representations, as well as support
functions such as 3D shapes, fitting functions, and graphics.

• 3D Calibration Tools provides detailed information on the 3D calibration tools
provided by VisionPro 3D Add In, including specific recipes and procedures for
calibrating a 3D machine vision system.

• Locating Objects in 3D describes the triangulation and fitting tools that enable the
generation of 3D poses for objects.

T

C

VisionPro 3D-Locate Developer’s Guide 9

http://www.omg.org
http://www.omg.org

Preface
Cognex Offices
The following are the address and phone number of Cognex Corporate Headquarters,
and the address of the Cognex web site:

Corporate Headquarters Cognex Corporation
Corporate Headquarters
One Vision Drive
Natick, MA 01760-2059
(508) 650-3000

Web Site www.cognex.com
10 VisionPro 3D-Locate Developer’s Guide

http://www.cognex.com

1
3D Vision Overview
VisionPro provides an interactive development environment for configuring acquisition
and I/O, two-dimensional vision tools for analyzing images, and capabilities for image
and graphics display. VisionPro also provides a full-featured toolkit that you can
program in .NET using C#, VB.NET or managed C++.

The optional 3D-Locate API allows you to generate information about objects in
three-dimensional space from two-dimensional images.

Creating a complete 3D application requires a combination of standard VisionPro
features to be used along with the 3D-Locate API. The application acquires images of
an object using multiple cameras and uses various pattern matching and shape-fitting
vision tools to locate a set of common features. The 3D-Locate tools use the location of
these found features to build data structures representing the object in
three-dimensional space, and can return information regarding the pose of the object in
the physical world.

This chapter contains the following sections:

• Some Useful Definitions on page 12 provides an overview of the chapter and
defines some terms that you will encounter as you read.

• 3D Calibration on page 14 provides an overview of 3D calibration, which lets you
map 2D points from an acquired image to locations in a three-dimensional physical
space.

• Triangulation on page 28 is a capability that lets you determine the
three-dimensional location of points and three-dimensional position and orientation
of objects in space based on data from multiple 2D images.

• Robot (Hand-Eye) Calibration on page 39 is a specialized calibration capability
intended for use with robots and robot-mounted machine vision cameras.

The VisionPro installation includes a sample 3D application using Microsoft Visual
Studio, located by default at %VPRO_ROOT%\samples3D\Applications. Copy the
contents to a folder where you have write permission before you execute it.
VisionPro 3D-Locate Developer’s Guide 11

3D Vision Overview 1
Some Useful Definitions
This section defines some terms and concepts used in this chapter.

3D Pose The position and orientation of a 3D coordinate system within another 3D coordinate
system. A pose comprises 6 degrees of freedom: X-translation, Y-translation,
Z-translation, X-rotation, Y-rotation, and Z-rotation.

3D Position The location of a 3D point within a 3D coordinate system. A 3D position is represented
by an x-value, y-value, and z-value.

3D Ray Geometric object defined by a 3D position (the starting point of the ray) and orientation.
A ray extends infinitely from its origin.

3D-Calibrated
Camera

A camera for which a 3D calibration (both extrinsic and intrinsic) has been computed.

Raw2D Space Left-handed 2D coordinate space based on the pixels in an acquired image.

Camera3D
Space

A right-handed 3D coordinate space with its origin at the camera’s optical convergence
point, X- and Y-axes that are approximately parallel to and oriented in the same direction
as the Raw2D coordinate system X- and Y-axes, and a Z-axis that extends along the
optical axis away from the camera.

Camera2D
Space

The plane at Z=1 of Camera3D Space. When Camera2D space is viewed from the
camera (Z < 1 and in the direction of the Camera3D positive Z axis) then Camera2D
space appears as a left-handed 2D coordinate system. When Camera2D space is
viewed in the direction of the Camera3D negative Z axis from a point in front of the
camera (where Z > 1), then Camera2D Space appears as a right-handed 2D coordinate
system.

Phys3D Space A right-handed 3D coordinate space initially defined by the fiducial mark on the
calibration plate specified as having an origin-defining pose-type used to perform 3D
calibration. This space can be defined by any coordinate frame in physical space.

Hand3D Space A right-handed 3D coordinate space defined by the end-effector on a robot. The
position of the robot hand is reported by the robot controller as the pose of Hand3D
space in RobotBase3D space. (Some robot manufacturers and integrators refer to this
as tool space.)

RobotBase3D
Space

A right-handed 3D coordinate space defined by the robot manufacturer or integrator. It
is typically associated with the robot base (the part of the robot that is rigidly fixed to the
physical world).
12 VisionPro 3D-Locate Developer’s Guide

1 3D Vision Overview
Checkerboard
Feature
Extractor

Software that locates all of the grid vertices in an image of a Cognex checkerboard
calibration plate, along with the fiducial features that define the plate origin. The feature
extractor constructs a list of correspondence pairs which associate the location in the
image of each feature with its physical position, based on the physical grid pitch value
that you supply.

Correspondence In triangulation, the association of a given feature location in one view of an object with
the same feature’s location in another view of the object.

Correspondence
Pair

The physical coordinates and image coordinates of a given calibration plate vertex.

Triangulation Establishing a 3D pose or position by computing the intersection points of sets of 3D
rays.
VisionPro 3D-Locate Developer’s Guide 13

3D Vision Overview 1
3D Calibration
Three-dimensional calibration is a process that establishes a mathematical relationship
between the 2D coordinate system associated with the pixels in an acquired image and
a 3D coordinate system associated with the physical world in front of the camera. The
initial definition of the 3D physical coordinate space is provided by the origin of a
calibration plate.

Note Throughout this chapter the term Raw2D space refers to the 2D
coordinate system established by an acquired image and the term
Phys3D space refers to a 3D physical coordinate system
established by the 3D calibration process. During 3D calibration,
Phys3D space is defined by the calibration plate origin at calibration
time, which is referred to as CalPlate3D space.

For any three-dimensional vision environment, 3D calibration must be performed for
each camera, whose configuration is defined by the physical location of the camera in
addition to the optical system used to form an image on the image sensor.

Once 3D calibration has been performed, the camera is 3D-calibrated and has an
associated 3D calibration object of type Cog3DCameraCalibration

A 3D-calibrated camera lets you transform a 2D point from Raw2D space into a 3D ray
in Phys3D space, as shown in Figure 1.

 Figure 1. Transforming a 2D point from Raw2D space into a 3D ray in Phys3D space

A 3D calibration object also lets you transform a 2D point from Raw2D space into a 3D
point in Phys3D space, as long as you are also able to supply a 3D plane in Phys3D
space within which the 3D point lies.

3DC+Y

+X
2D point in Raw2D space...

... 3D ray in Phys3D space

... maps to ...

1

3

2

14 VisionPro 3D-Locate Developer’s Guide

1 3D Vision Overview
In addition to transforming 2D image points to 3D rays and points, a 3D calibration
object can also transform 3D points in Phys3D space to 2D points in Raw2D space, as
shown in Figure 2.

 Figure 2. 3D calibration maps 3D points in physical space to 2D points in an image

Note Any single 2D point in Raw2D space always transforms to a single
3D ray in Phys3D space. A single 3D point in Phys3D space always
transforms to a single 2D point in Raw2D space. Transforming a
single 2D point from Raw2D space to a single 3D point in Phys3D
space requires that you constrain the transformation by supplying a
3D plane.

How Does 3D Calibration Work?
Three-dimensional calibration can be done using a single camera or multiple cameras.
Specific information on multi-camera calibration can be found in the section
Multi-Camera Calibration on page 25.

Three-dimensional calibration works by acquiring a series of images of a calibration
plate with the plate at different locations and orientations within a working volume using
a camera with fixed optical and mechanical configuration. You supply the plate images,
the physical spacing of the grid vertices, information about the pose types of the plates
in the different images, and identify which plate view corresponds to the origin of the
Phys3D space to the 3D camera calibration function.

VisionPro 3D-Locate supports the method Cog3DCameraCalibrator.Execute() for
computing the 3D calibration. See the Programming Reference in the VisionPro online
documentation for more information.

3DC
+Y

+X
2D point in Raw2D space

3D point in Phys3D space...

... maps to ...

1

3

2

VisionPro 3D-Locate Developer’s Guide 15

3D Vision Overview 1
A 3D calibration object provides a transformation between the Raw2D space
established by an acquired image and the Phys3D space established by the 3D
calibration process.

Calibration Plate Requirements
Cognex 3D calibration supports the use of two types of calibration plates:

• Single-fiducial checkerboard plates

• DataMatrix calibration plates

Each type of plate is described in this section.

Single-Fiducial Checkerboard Plates
You can use a Cognex checkerboard calibration plate to perform 3D calibration. The
Cognex checkerboard calibration plate includes a standard fiducial mark that defines
the plate origin, as shown in Figure 3.

 Figure 3. Calibration plate fiducial mark

Long bar defines +X direction

Intersection of these grid
lines defines origin

+Z extends from back
of plate

Short bar defines +Y direction
16 VisionPro 3D-Locate Developer’s Guide

1 3D Vision Overview
DataMatrix Checkerboard Plates
Cognex 3D calibration supports the use of checkerboard calibration plates with multiple
DataMatrix code fiducial marks. These plates use DataMatrix codes to label the
locations of multiple grid vertices on the plate and establish the orientation and
handedness of the plate space. The DataMatrix codes can also be used to encode the
plate’s grid pitch.

Note All Cognex-supplied DataMatrix plates encode the grid pitch; plates
that you construct using Cognex-supplied CAD data may not
include the grid pitch.

Figure 4 shows how multiple DataMatrix fiducial marks serve to label four vertices on a
checkerboard calibration plate (in this case, a plate with a 2mm grid pitch).

 Figure 4. DataMatrix Calibration Plate

The plate origin (0,0) is establlished by the locations encoded in the DataMatrix fiducial
marks. For all Cognex-supplied plates, the plate origin is located at the center of the
fiducial mark establishing the (0,0) position, but there is no requirement that the plate
origin be at the center of a fiducial mark (or even on the plate at all).

(0,0)

(20,0)

(20,20)

(0,20)

(20,0)
VisionPro 3D-Locate Developer’s Guide 17

3D Vision Overview 1
In all cases, the location specified by the DataMatrix code is at the center of the symbol,
as shown in Figure 5.

The handedness and orientation of the plate coordinate space are defined by the
orientation of the DataMatrix mark, as shown in Figure 5. The postive X- and Y-axis
directions are established by the orientation of the finder pattern.

 Figure 5. Coordinate axes defined by DataMatrix fiducial mark

As is the case with the single-fiducial plate, the positive Z-axis extends away from the
back of the plate.

Note If the plate is mirrored (as would be the case if a transparent plate
were viewed from behind), the calibration tool detects that the
DataMatrix symbol is mirrored, and inverts the handedness of the
coordinate system. In the case where a transparent plate is
viewedfrom its back side, the positive Z axis is towards the camera.

+X

+Y

Finder pattern

Timing pattern

Vertex location
(code center)
18 VisionPro 3D-Locate Developer’s Guide

1 3D Vision Overview
Checkerboard calibration plates with DataMatrix fiducial marks provide several
important advantages:

• The plates enable the use of the Exhaustive Multi-Region mode in 3D camera
calibration. This permits calibration in cases where reflections or other occlusions
hide regions of grid vertices. Using this mode, the calibration tool can make use of
multiple regions of vertices, as long as each region contains at least one fiducial
mark.

• The DataMatrix marks encode the plate pitch, so you do not need to include this
information as part of your system configuration.

• When performing 3D calibration, as long as any fiducial on the plate is visible in an
image, that image can be used for calibration. This is much less restrictive than the
single-fiducial plate, where the single origin fiducial must be visible.

Note Cognex does not publish the specific encoding used for DataMatrix
fiducial marks. Cognex can provide high-accuracy DataMatrix
fiducial plates in a wide range of sizes, grid pitches, and materials.
Contact your Cognex representative for more information.

Plate Poses
The minimum requirement for 3D calibration is that you acquire four images of the
calibration plate, with the plate tilted at between 20° and 30° relative to the image plane
and then rotated about the camera’s optical axis between images (Cognex
recommends a 90° rotation between images). You do not need to specify any
information about the position or orientation of the plate in these views; the calibration
software automatically calibrates the camera to the physical volume in which the plate
is placed.

For best results, however, Cognex recommends that you supply a total of nine plate
views. In addition to the four plate views described above, Cognex recommends that
you provide five views in which the plates are parallel to each other and separated
vertically by a known distance. You need to provide this distance, specified in the same
units as the plate grid spacing, to the calibration function.

Note Each image in a plate view (the images from each camera of the
plate at a given pose), should include the plate fiducial mark. If you
are using a DataMatrix calibration plate, then the image should
include any plate fiducial mark.

Finally, regardless of how many plate views you use, you must specify which plate view
defines the origin of Phys3D space. If you are supplying the optional 5 stacked views,
then the view that defines the Phys3D origin must be one of those views (typically it is
the plate closest to the center of the working volume, view 5 in Figure 6).
VisionPro 3D-Locate Developer’s Guide 19

3D Vision Overview 1
Figure 6 shows both the required (views 1-4) and recommended (views 5-9) plate views
for use with 3D calibration.

 Figure 6. Required (1-4) and recommended (5-9) plate views for 3D calibration

3D Calibration Coordinate Spaces
As described in the section 3D Calibration on page 14, a 3D calibration object provides
a transformation between the Raw2D space established by an acquired image and the
Phys3D space established by the calibration plate.

1 2 3

4 6

7 8 9

5

20 VisionPro 3D-Locate Developer’s Guide

1 3D Vision Overview
Table 1 provides a more formal definition of the Raw2D and Phys3D spaces.

Table 1. Raw2D and Phys3D spaces

The Cog3DCameraCalibration class provide functions that map between Raw2D and
Phys3D spaces, in either direction. Note that the Raw2D to Phys3D mapping is unusual,
in that it maps points in Raw2D space to rays in Phys3D space, while the Phys3D to
Raw2D mapping maps points in Phys3D space to points in Raw2D space.

Note All transformations used with 3D calibration are named using the
format SpaceAFromSpaceB. Such transformations accept values
expressed in SpaceB and maps the values to SpaceA.

Space Description Origin Units Handedness

Raw2D Raw 2D image
space defined by
acquired pixels.

Upper-left corner
of upper-left pixel
in acquired
image.

Pixels. Left-handed.
Positive-X
extends to the
right, positive-Y
extends down.

Phys3D 3D physical
space. Initially,
this is a
placeholder
space defined by
the calibration
plate.

Defined by
fiducial mark on
calibration plate
(CalPlate3D
space).

Physical units.
Initially defined by
calibration plate
grid spacing and
spacing between
elevated plate
views.

Right handed. X-
and Y-axis
aligned to
calibration grid,
Z-axis normal to
plate extending
away from the
camera.
VisionPro 3D-Locate Developer’s Guide 21

3D Vision Overview 1
Figure 7 shows Raw2D space, Phys3D space, and the Raw2DFromPhys3D
transformation that links the spaces.

 Figure 7. Raw 2D and Physical 3D space

+Y

+X

Raw2D space

Phys3D space

Raw2DFromPhys3D
is 3D camera calibration
22 VisionPro 3D-Locate Developer’s Guide

1 3D Vision Overview
Additional Spaces
All that is required to make basic use of a 3D calibration is the overall 3D calibration and
the two spaces listed in the preceding section. The 3D calibration tool also records
additional information about the 3D calibration in the form of a pair of additional
intermediate coordinate spaces. Table 2 adds these spaces to the two spaces
described in Table 1 on page 21.

Table 2. Supplemental spaces.

Space Description Origin Units Handedness

Raw2D Raw 2D image
space defined by
acquired pixels.

Upper-left
corner of
upper-left pixel
in acquired
image.

Pixels. Left-handed.

Positive-X extends to
the right, positive-Y
extends down.

Camera2D Undistorted 2D
space that
removes effects
of optical
distortion and
pixel aspect
ratio.

0,0,1 in
Camera3D
space.

N/A Right-handed if
viewing in front of the
camera.

X- and Y-axes parallel
to and in the same
direction as
Camera3D X- and
Y-axes

Camera3D Idealized 3D
space with Z-axis
corresponding to
optical axis of
camera.

Point of optical
convergence
within lens.

Physical
units.

Right -handed.

X- and Y-axis roughly
parallel to Raw2D X-
and Y-axis. Z-axis
extends away from
front of camera along
optical axis.

Phys3D 3D physical
space.

Defined by
fiducial mark on
calibration plate.

Physical
units. Initially
defined by
calibration
plate grid
spacing and
spacing
between
elevated
plate views.

Right handed.

X- and Y-axis aligned
to calibration grid,
Z-axis normal to plate
extending away from
the camera.
VisionPro 3D-Locate Developer’s Guide 23

3D Vision Overview 1
The transformations between the four coordinate spaces listed in Table 2 provide
important information about the computed 3D calibration:

• Cog3DCameraCalibrationIntrinsics::MapPointFromCamera2DToRaw2D

The transformation from Camera2D to Raw2D space provides the intrinsic part of
the overall 3D calibration. The camera intrinsics form a nonlinear transformation that
removes the effect of optical distortion, pixel aspect ratio, and any irregularity in the
spacing of pixels within the image sensor.

• Cog3DCameraCalibration::Camera3DFromPhys3D

The transformation to Phys3D from Camera3D space provides the extrinsic part of
the overall 3D calibration. The extrinsic are a rigid 6-degree-of-freedom linear
transformation between the Phys3D space and the Camera3D space.

The transformation between Camera3D and Camera2D space is a simple projection.
Any 3D point (X,Y,Z) in Camera3D space can be mapped to a 2D point in Camera2D
space by dividing its X- and Y-values by its Z-value.
24 VisionPro 3D-Locate Developer’s Guide

1 3D Vision Overview
Figure 8 shows all four of the spaces, and their associated transformations, generated
during 3D calibration.

 Figure 8. Spaces and transformations computed by 3D calibration

Multi-Camera Calibration
While single-camera 3D calibration is supported, and can be used effectively in some
applications, the highest accuracy and greatest application flexibility is provided by
using multiple cameras.

+Y

+X

Raw2DfromCamera2D
is intrinsic part of
3D calibration

Camera 2DfromCamera3D
projects from 3D Camera
space to 2D Camera space

Camera3DfromPhys3D
is extrinsic part
of 3D calibration

Camera3D
space

Phys3D
space

Camera2D space

Raw2D space
VisionPro 3D-Locate Developer’s Guide 25

3D Vision Overview 1
Multi-camera 3D calibration is performed in exactly the same way, and produces the
same type of results, as single-camera calibration. The only differences are that
multiple, simultaneously acquired images (1 per camera) are acquired of each plate
pose, as shown in Figure 9, and a separate calibration object is computed for each
camera.

 Figure 9. Multi-camera calibration

Note For single-camera calibration, all images must include well-focused
views of all calibration plate features. For multi-camera calibration, if
some images from some cameras do not include calibration
features, it is generally still possible to compute an accurate
calibration. For best results, however, every image from every
camera should include well-focused views of all calibration plate
features.

A multi-camera 3D calibration is computed with a single function call, and this call takes
as arguments all of the image data from all of the cameras, properly indexed. Because
a single function call has access to the input data from all cameras at the same time, a
highly accurate calibration is computed.

The resulting calibration provides a 3D calibration object for each calibrated camera.
While each camera has a unique Raw2D, Camera2D, and Camera3D space, they share
the same Phys3D space since they were viewing the same 3D physical coordinate
space defined by the calibration plate.
26 VisionPro 3D-Locate Developer’s Guide

1 3D Vision Overview
Figure 10 shows the spaces associated with a 3D calibration using two cameras.

 Figure 10. 3D camera calibrations from multiple cameras share common 3D physical
space

The design of 3D calibration guarantees that all 3D-calibrated cameras that were
calibrated at the same time map Raw2D image points to the same Phys3D space. This
capability is the basis of triangulation, which is discussed in the next section.

+Y

+X

+Y

+X

Camera3D1
space

Phys3D
space

Camera2D1
space

Raw2D1 space

Camera3D2
space

Camera2D2
space

Raw2D2 space
VisionPro 3D-Locate Developer’s Guide 27

3D Vision Overview 1
Triangulation
Because a 3D-calibrated camera can transform a 2D point in Raw2D space to a 3D ray
in Phys3D space, two (or more) 3D-calibrated cameras arranged so that they can view
the same object from different locations can generate multiple intersecting rays in
Phys3D space that all correspond to the same feature of the object. Triangulation is the
process of using this property of multiple 3D-calibrated cameras to generate 3D position
and pose information from multiple acquired images.

There are several basic requirements that must be met in order to successfully use
triangulation to convert 2D locations into a 3D location:

• The image acquired from each of the 3D-calibrated cameras must include the
feature that you wish to locate.

• You must be able to use a 2D vision tool to obtain an accurate 2D feature location
in the acquired image; the 2D location of the feature must not be affected by 3D
effects such as perspective and foreshortening.

• The part cannot have moved between the times the images were acquired. For best
results, the images should be acquired simultaneously.

• The 3D-calibrated cameras must have been calibrated together so that their
calibrations all refer to the same Phys3D space. In addition, the optical
configuration, including focus position and aperture, must not have changed for
any camera since the cameras were calibrated.

• The 3D-calibrated cameras must view the part from different directions.

Figure 11 shows two 3D-calibrated cameras acquiring images of the same part at the
same time.

 Figure 11. Simultaneous multi-camera acquisition
28 VisionPro 3D-Locate Developer’s Guide

1 3D Vision Overview
Once the images have been acquired, your application must determine the location of
a given feature on the object in both images. In the example shown in Figure 11, the
application could use a corner on the lower edge of the end of the part, as shown in
Figure 12.

 Figure 12. Part feature

Using 2D vision tools, the application first locates the same part feature (the corner) in
Raw2D space in both acquired images. The application then calls the triangulation tool’s
Cog3DTriangulator.Execute() function providing the following inputs:

• The two feature locations in Raw2D space

• The two Cog3DCameraCalibration objects produced during 3D calibration

The function returns the 3D location of the feature in Phys3D space. Figure 13 shows the
triangulation process.

 Figure 13. Triangulating a 3D point from two 2D points from two 3D-calibrated
cameras

3DC

3DC

2D points in Raw2D space

3D rays in Phys3D space

3D point in Phys3D space
VisionPro 3D-Locate Developer’s Guide 29

3D Vision Overview 1
Estimating 3D Object Pose
While triangulation can provide 3D locations of points, most 3D vision applications are
interested in the 3D pose of an object. If your application can meet the following basic
requirements, you can use the 3D API to determine the 3D pose of an object based on
the location of 2D features in acquired images.

• Your part has features that can be reliably and accurately found in 2D images from
one or more 3D-calibrated cameras.

• A sufficient number of features can be located to allow pose estimation.

• You can provide a 3D Model comprised of a set of 3D model features. The model
features must be expressed in a single 3D coordinate space named Model3D
space.

3D Model
Consider the part shown in Figure 12 on page 29. You could supply a 3D Model of the
part by giving the 3D locations of the eight outermost corners of the part, as shown in
Figure 14.

 Figure 14. 3D Features

3D Features

3D Features
(visible to camera)

(in model)
30 VisionPro 3D-Locate Developer’s Guide

1 3D Vision Overview
Even though not all eight of the 3D model features that define the 3D model are visible
to the camera, the first requirement is still met because seven features are visible, and
the seven visible features include three non-collinear points, which is sufficient for 3D
pose estimation.

Note As shown in Figure 15, the 3D features that make up a 3D model are
maintained as an indexed list. In this example, the model contains
eight 3D points.

 Figure 15. 3D Model points are indexed

Direct 3D Pose Estimation
Consider the simple example of a part with a 3D model consisting of three points. If you
can correspond the locations of those three points with the 2D locations of those
features in an image acquired from a 3D-calibrated camera, the VisionPro 3D-Locate
API can generate an accurate estimate of the pose of the model in 3D physical space
using direct pose estimation.

Direct pose estimation is based on the fact that given a point in an image from a
3D-calibrated camera, VisionPro can compute the 3D ray in 3D physical space that
corresponds to that point, as shown in Figure 1 on page 14.

3D Model

0

1

2

3

4

5

6

7

VisionPro 3D-Locate Developer’s Guide 31

3D Vision Overview 1
To perform direct pose estimation, the 3D-Locate API computes the 3D rays for each of
the supplied 2D points, then determines the 3D model pose that best fits the specified
3D points in the model to the computed 3D rays. This process is shown in Figure 16.

 Figure 16. Direct 3D pose estimation from 2D-3D correspondence

Feature Correspondence
The VisionPro 3D-Locate API uses the Cog3DCrsp2D3D class to hold information about
a single 2D-3D feature correspondence (the correspondence between one 2D feature
in one image from one camera and a single 3D feature in a 3D model). The classes and
methods that implement 3D pose estimation, 3D model generation, and part

Locate three non-collinear 2D features
in 2D image from calibrated camera.

Compute 3D rays
from 2D features

Determine best fit of
corresponding 3D
model points to rays.

3D pose of object’s Model3D
space in Phys3D space
32 VisionPro 3D-Locate Developer’s Guide

1 3D Vision Overview
correspondence take lists of Cog3DCrsp2D3D objects as input. It is the job of your
VisionPro 3D application to create, initialize, and manage these Cog3DCrsp2D3D
objects.

Note The Cog3DCrsp2D3D class is described in detail in Chapter 4,
Locating Objects in 3D on page 81 as well as the VisionPro
Programming Reference in the VisionPro online documentation.

Each feature correspondence includes the following basic information:

• The 2D position of a feature in an image acquired by a 3D-calibrated camera

• The index of the 3D feature in a 3D model that corresponds to the 2D position of the
feature in the image.

• The index of the camera used to acquire this image, if you are acquiring images
simultaneously from multiple cameras that are 3D-calibrated to the same 3D
physical space.

• The index of the part instance in this image, if multiple instances of the part are
present.

• Detailed information about the 3D feature, including its type (point, line segment,
circle, or cylinder) and subfeatures. The use of non-point 3D features is introduced
in the section Non-Point 3D Features on page 37.

Using Feature Correspondences for Pose
Estimation
As described in the previous section, all that is required for direct pose estimation are
the correspondences between 3D model features and 2D features as visible in an image
from a 3D-calibrated camera.

VisionPro 3D-Locate uses feature correspondences as a simple way of encoding and
managing this information. They are also used as input by the direct pose estimator.
VisionPro 3D-Locate Developer’s Guide 33

3D Vision Overview 1
Figure 17 shows how you would use two feature correspondences to represent how the
2D features in the image shown in Figure 16 on page 32 correspond to the 3D features
in the 3D model.

 Figure 17. Feature correspondences for single-camera pose estimation using three
3D Model feature points.

Note The feature correspondences shown in Figure 17 do not include the
part instance index or feature type fields.

When you use feature correspondences to perform direct pose estimation, keep in mind
that:

• You must create a feature correspondence for each 2D feature for which a
corresponding 3D feature exists.

• Only one correspondence can exist for a given 2D feature. A given 2D feature can
only correspond to one 3D feature.

• A given 3D feature will typically be associated with multiple feature
correspondences, one for each image in which the feature is visible.

2D Location

Correspondence 0

500,400

0

7

Camera #

3D Feature

2D Location

Correspondence 1

400,300

0

1

Camera #

3D Feature

2D Location

Correspondence 2

350,270

0

0

Camera #

3D Feature
34 VisionPro 3D-Locate Developer’s Guide

1 3D Vision Overview
Multi-Camera Direct 3D Pose Estimation
The example shown in Figure 16 on page 32. uses a single camera. You can get better
accuracy and robustness, particularly in cases where not all features may be seen in all
parts, by using multiple cameras. You can use any number of cameras for pose
estimation, as long as

• The cameras are all 3D-calibrated to the same 3D space as described in the
section Multi-Camera Calibration on page 25.

• All of the feature correspondences describe 2D features from images of the same
part or parts acquired at the same time. You cannot use 2D features from images
where the part moved between the time that the images were acquired.

Figure 18 shows the use of multiple cameras for direct pose estimation.

 Figure 18. Using multiple cameras for direct 3D pose estimation.

By adding feature correspondence information from additional cameras, your
application can obtain more accurate pose estimates, and because multiple cameras
can provide for multiple views of a given part feature, your application will be more
robust in situations where not all part features are visible to all cameras at all times.

Camera 0 Camera 1

Compute 3D rays from
2D points (both cameras)

More accurate 3D pose estimate
VisionPro 3D-Locate Developer’s Guide 35

3D Vision Overview 1
If you are using multiple cameras, you use additional feature correspondence pairs to
describe the additional correspondences, taking care to set the camera index correctly.

 Figure 19. Feature correspondences for multi-camera pose estimation

2D Location

Correspondence 0

500,400

0

7

Camera #

3D Feature

2D Location

Correspondence 1

400,300

0

1

Camera #

3D Feature

2D Location

Correspondence 2

350,270

0

0

Camera #

3D Feature

2D Location

Correspondence 3

100,300

1

5

Camera #

3D Feature

2D Location

Correspondence 4

400,300

1

7

Camera #

3D Feature

2D Location

Correspondence 5

350,170

1

2

Camera #

3D Feature
36 VisionPro 3D-Locate Developer’s Guide

1 3D Vision Overview
Multiple Parts
The VisionPro 3D-Locate API supports 3D pose estimation for multiple parts
simultaneously, as long as each feature correspondence pair correctly identifies the
part instance of the correspondence. For most real-world applications, which use 2D
vision tools to locate part features in images, it can be difficult or impossible to
guarantee that this part instance correspondence is correct, as shown in Figure 20.

 Figure 20. Part correspondence problem

VisionPro 3D-Locate includes an automatic part corresponder that can detect and
correct the part correspondence information in feature correspondences from different
images, as long as you have a 3D model of your part and the 2D features are correctly
corresponded to the 3D model feature.

For detailed information on the part corresponder, see Chapter 4, Locating Objects in
3D on page 81.

Non-Point 3D Features
All of the examples described in this section use 2D and 3D points as features. VisionPro
3D-Locate also allows you to work with complex 3D feature types, including lines, line
segments, circles, and cylinders. Using these complex feature types allows you to make
use of the edges, holes, and cylinders in your part, simplifying the task of 2D feature
location, and greatly improving the accuracy of 3D pose estimation.

The use of complex feature types is described in detail in Chapter 4, Locating Objects
in 3D on page 81.

Camera 0 Camera 1

0

1

2
0

1

2

VisionPro 3D-Locate Developer’s Guide 37

3D Vision Overview 1
Using Feature Correspondences to Generate 3D
Models
If, at setup time, you have a collection of feature correspondences for multiple features
of your part, but you do not have a 3D model that defines the 3D positions of those
features relative to each other (that is, in a single Model3D coordinate space), you can
use the VisionPro 3D-Locate API to automatically generate the 3D model for you.

Note You must have feature correspondence pairs from multiple cameras
to use the model generation function.

3D model generation uses triangulation to compute the 3D position of a 3D model
feature based on multiple feature correspondences that give the 2D location of the
feature in multiple images acquired simultaneously from 3D-calibrated cameras.
38 VisionPro 3D-Locate Developer’s Guide

1 3D Vision Overview
Robot (Hand-Eye) Calibration
Robot calibration is a specialized type of calibration that is suited for the specific
application where a single machine vision camera is mounted on the end-effector of a
robot.

Hand-eye calibration makes use of two additional 3D coordinate spaces:

• RobotBase3D space is a 3D physical space defined by the robot manufacturer or
integrator. It is typically associated with the robot base (the part of the robot that is
rigidly fixed to the physical world).

• Hand3D space is a 3D physical space associated with the robot’s end efffector.
The robot controller reports the location of the end effector by specifying the pose
of Hand3D space in RobotBase3D space.

Hand-eye calibration computes the rigid 3D transformation that maps 3D points from
Hand3D space to the Camera3D space of the effector-mounted camera. It is this
mapping that permits your application to ultimately link feature locations in an image
acquired from the end-effector-mounted camera with 3D locations in the robot’s
RobotBase3D space.

Note Hand-eye calibration can be done for systems using a single
camera or multiple cameras. Also, hand-eye calibration can also
calibrate robots in which the camera is stationary and the robot
moves a stage carrying the calibration plate. In this case, the
transformation between RobotBase3D space and Camera3D space
is calibrated.
VisionPro 3D-Locate Developer’s Guide 39

3D Vision Overview 1
Calibration Phase
To perform hand-eye Calibration, place a standard checkerboard calibration plate at a
fixed location. Then move the robot end-efffector to a series of positions (“stations”) from
which it can view the calibration plate. At each station, acquire an image of the plate and
record the pose of the end effector’s Hand3D space in RobotBase3D space (this
information is typically provided by the robot controller software).

 Figure 21. Hand-eye calibration

To perform the hand-eye calibration, call the calibration function with two items of data
from each station:

• The correspondence pair list of the plate vertex locations generated by the
checkerboard feature extractor, as described in the section How Does 3D
Calibration Work? on page 15.

• A rigid 3D transformation giving the pose of Hand3D space in RobotBase3D space
40 VisionPro 3D-Locate Developer’s Guide

1 3D Vision Overview
Figure 22 shows the inputs from a single station.

 Figure 22. Per-station inputs for hand-eye calibration

Calibration plate
vertex locations
from acquired 2D
image

1

3D transformation giving
the pose of Hand3D space
in RobotBase3D space.

2

Hand3D
space

RobotBase3D space
VisionPro 3D-Locate Developer’s Guide 41

3D Vision Overview 1
Calibration Outputs
A successful hand-eye calibration produces a rigid 3D transformation that transforms
3D points from Hand3D space to Camera3D space, as shown in Figure 23.

 Figure 23. Hand-eye calibration outputs

Hand-eye calibration takes intrinsic parts of camera calibrations (obtained from 3D
camera calibration) as inputs. The same data set acquired for hand-eye calibration may
be used for camera calibration first to obtain the camera intrinsics.

Camera3DFromHand3D
Maps 3D points from Hand3D
space to Camera3D space

Hand3D space

Camera3D space
42 VisionPro 3D-Locate Developer’s Guide

1 3D Vision Overview
Most single-camera robot vision applications that use hand-eye calibration will
ultimately use both the hand-eye calibration and the intrinsic part of the 3D camera
calibration, as shown in Figure 24.

 Figure 24. Spaces and transformations associated with hand-eye calibration

The Cog3DHandEyeCalibrationResult object contains both the hand-eye calibration
and the camera intrinsics.

2 1
4

5

3

2

1

3

4

Hand3D space from RobotBase3D space (supplied by robot)

Camera3D space from Hand3D space (result of hand-eye calibration)

Camera2D space from Camera3D space (projection)

Raw2D space from Camera2D space (intrinsic part of original camera
calibration)

5 RobotBase3D space from CalPlate3D space (result of hand-eye calibration)
VisionPro 3D-Locate Developer’s Guide 43

3D Vision Overview 1
44 VisionPro 3D-Locate Developer’s Guide

2
3D Shapes, Graphics
and Transforms

This chapter describes the basic VisionPro 3D-Locate building blocks that provide the
mathematical foundation for your 3D applications. The framework includes the following
items:

• 3D shapes that provide a rich set of classes for representing and manipulating
geometric objects in three dimensions.

• 3D transformations that allow you to describe the pose of 3D objects in 3D space,
and to map points and shapes between different 3D coordinate spaces. The 3D
transformations include a rich set of representations for 3D rotations, which allow
you to characterize the rotation of objects and coordinate systems in three
dimensions.

• 3D shape projection tools that allow you to create a 2D representation of a 3D shape
using a 3D camera calibration. Such a 2D projection can be used to display a
graphical representation of a 3D shape using a 2D display device.

This chapter contains the following sections:

• Some Useful Definitions on page 46, provide an overview of the chapter and define
some terms that you will encounter as you read.

• 3D Shapes on page 47 describes the 3D shape classes and interfaces, and also
describes the shape projection functions.

• 3D Transformations on page 51 provides information on the classes that implement
3D rigid transformations.
VisionPro 3D-Locate Developer’s Guide 45

3D Shapes, Graphics and Transforms 2
Some Useful Definitions
This section defines some terms and concepts used in this chapter.

3D Pose The position and orientation of a 3D coordinate system within another 3D coordinate
system. A pose comprises 6 degrees of freedom: X-translation, Y-translation,
Z-translation, X-rotation, Y-rotation, and Z-rotation.

3D Position The location of a 3D point within a 3D coordinate system. A 3D position is represented
by an x-value, y-value, and z-value.

Camera3D
Space

A right-handed 3D coordinate space with its origin at the camera’s optical convergence
point, X- and Y-axes that are approximately parallel to and oriented in the same direction
as the Raw2D coordinate system X- and Y-axes, and a Z-axis that extends along the
optical axis away from the camera.

Space The plane at Z=1 of Camera3D Space. When space is viewed from the camera (Z < 1
and in the direction of the Camera3D positive Z axis) then space appears as a
left-handed 2D coordinate system. When space is viewed in the direction of the
Camera3D negative Z axis from a point in front of the camera (where Z > 1), then Space
appears as a right-handed 2D coordinate system.

Hand3D Space A right-handed 3D coordinate space defined by the end-effector on a robot. The
position of the robot hand is reported by the robot controller as the pose of Hand3D
space in RobotBase3D space. (Some robot manufacturers and integrators refer to this
as tool space.)

Model3D Space A 3D coordinate space implicitly defined by a collection of 3D points that describe a 3D
object (model).

Phys3D Space A right-handed 3D coordinate space initially defined by the fiducial mark on the
calibration plate used to perform 3D calibration. This space can be defined by any
coordinate frame in physical space.

RobotBase3D
Space

A right-handed 3D coordinate space defined by the robot manufacturer or integrator. It
is typically associated with the robot base (the part of the robot that is rigidly fixed to the
physical world).
46 VisionPro 3D-Locate Developer’s Guide

2 3D Shapes, Graphics and Transforms
3D Shapes
VisionPro 3D-Locate includes a 3D shape framework as part of the mathematical
foundation for 3D vision applications. The key features of the 3D shape framework are:

• Concrete implementations of the following 3D shapes:

Cog3DAlignedBbox
Cog3DBox
Cog3DCircle
Cog3DCylinder
Cog3DLine
Cog3DLineSeg
Cog3DPlane
Cog3DRay
Cog3DRectangle
Cog3DSphere

• Basic geometric functions such as area, volume, distance, intersection, parallelism,
anti-parallelism, and nearest point for all the concrete shapes.

• Polymorphism of the concrete shapes that allows you to work with concrete shapes
through an abstract base class reference. This allows you to create code to obtain
the volume of a set of shapes without needing to check the type of each shape.

3D Shape Class Architecture
All concrete 3D shape classes inherit from the Cog3DShapeBase interface, and
implement other interfaces that define common behavior for different shape types:

• ICog3DVertex provides functionality for shapes that can be described as a set of
vertices.

• ICog3DCurve provides functionality for shapes that can be described by 3D line
segments, arcs, and other 1D shapes.

• ICog3DSurface provides functionality for shapes that can be described by
surfaces.

• ICog3DVolume provides functionality for shapes that can be described as a
volume or collection of volumes.
VisionPro 3D-Locate Developer’s Guide 47

3D Shapes, Graphics and Transforms 2
Figure 25 shows the inheritance and implementation for a Cog3DAlignedBox: .

 Figure 25. Cog3DAlignedBox class inheritance

3D Shape State Type
VisionPro 3D-Locate shape types that implement ICog3DShape must implement the
ShapeState property. The 3D shape framework defines four state types that correspond
to the four shape type interfaces:

Cog3DAlignedBox

Cog3DShapeBase

- ICog3DShape
- ICog3DVertex
- ICog3DSurface
- ICog3DVolume

Shape type class State type enumeration

ICog3DVertex Cog3DShapeStateConstants.Vertex

ICog3DSurface Cog3DShapeStateConstants.Surface

ICog3DCurve Cog3DShapeStateConstants.Curve

ICog3DVolume Cog3DShapeStateConstants.Volume
48 VisionPro 3D-Locate Developer’s Guide

2 3D Shapes, Graphics and Transforms
A shape’s shape type controls how the shape’s geometry is interpreted by various
memebers of Cog3DShape. Figure 26 shows how the state type effects how the
distance to shape measurement is made between a point an a Cog3DBox.

 Figure 26. Shape State Type

3D Shape Geometric Operations
VisionPro 3D-Locate supports the Cog3DShapeGeometricOperations class, which
includes methods performing shape intersection, projection to plane,
parallelism/perpendicularity checking, and others.

Projecting 3D Shapes for Display
You can project 3D shapes into a 2D image if the image was acquired from a 3D
calibrated camera.

Note You must supply the 3D camera calibration object associated with
the 2D image space into which you wish to project a 3D shape. For
more information on 3D camera calibration, see the chapter 3D
Calibration Tools on page 55.

The 3D shape projection function, Cog3DShapeProjector.Execute() generates
standard 2D graphics that correspond to the projected 3D shape and appends them to
a CogGraphicCollection that you can display. The Cog3DShapeProjector class
supports properties to control the graphical appearance of the shapes.

Curve state type Vertex state type

Volume state typeSurface state type
VisionPro 3D-Locate Developer’s Guide 49

3D Shapes, Graphics and Transforms 2
Projection Shape Representation
When projecting a 3D shape you can choose to project the vertices of the shape or the
shape’s curves (edges). Shape projection does not support the projection of surfaces
or volumes, and it does not support hidden line removal.
50 VisionPro 3D-Locate Developer’s Guide

2 3D Shapes, Graphics and Transforms
3D Transformations
The following table summarizes the .NET classes that support 3D rigid transformations,
rotation, and poses:

3D Rigid Transforms
The VisionPro 3D-Locate vision framework provides the Cog3DTransformRigid class
that implement a 3D rigid body transform or 3D rigid transform. A 3D rigid transform
provides a mapping between two 3D Cartesian coordinate spaces. The mapping
consists of a 3D rotation and a 3D translation. There is no scaling, aspect, or shearing
in a rigid transform.

Note The 3D rigid transformation class is intended to let you map points,
vectors, poses, and shapes between 3D coordinate spaces. These
classes do not provide non-rigid, non-linear, or 2D-to-3D
transformations.

Functionality .NET Classes

3D Rotation Cog3DTransformRotation

3D Rotation – Euler angles Cog3DEulerZYX, Cog3DEulerXYZ,
Cog3DEulerZYXMovingAxes,
Cog3DEulerXYZMovingAxes

3D Rotation – quaternions Cog3DQuaternion

3D Rotation – axis angle Cog3DAxisAngle

3D Rotation – matrix Cog3DMatrix3x3

3D Translation Cog3DVect3

3D Point Cog3DVect3

3D Rigid Transform Cog3DTransformRigid

3D Linear Transform Cog3DTransformLinear

3D Composed Transform Cog3DTransformComposed

3D Pose Estimation Cog3DPoseEstimatorUsing2DPoints
Cog3DPoseEstimatorUsing3DPoints
Cog3DPoseEstimatorUsingCrsp2D3Ds
VisionPro 3D-Locate Developer’s Guide 51

3D Shapes, Graphics and Transforms 2
3D Rotation
3D rotations are encapsulated in the Cog3DTransformRotation class, which allows
construction from and conversion to many different representations of 3D rotations:
Euler angles, quaternions, 3x3 matrices, and others. Which representation you use
depends on the requirements of your overall application.

All these representations are described here:

http://en.wikipedia.org/wiki/Rotation_representation_(mathematics)
52 VisionPro 3D-Locate Developer’s Guide

http://en.wikipedia.org/wiki/Rotation_representation_(mathematics)

2 3D Shapes, Graphics and Transforms
3D Fitting
VisionPro 3D-Locate provides the following classes that let you fit 3D shapes to
collections of 2D or 3D points.

Class Description

Cog3DCircleFitterUsing2DPoints This class provides 3D circle fitting from
2D points. A 3D circle is fitted from one or
multiple sets of 2D image points. The sets
of image points can come from different
cameras or from a single camera providing
multiple views of the circle. The 3D circle
fitter computes the pose of the circle which
minimizes the sum squared image error
with respect to the given 2D image points
from calibrated camera(s).

Cog3DCircleFitterUsing3DPoints This class provides 3D circle fitting from
3D points. The 3D circle fitter computes the
pose of a 3D circle based on the specified
3D input points. The fitting technique is
controlled by the
Cog3DRobustFitParameters. See the
Remarks section of the
Cog3DRobustFitTechniqueConstants
enum and the
Cog3DRobustFitParameters class for
details.

Cog3DCylinderFitterUsing2DPoints This class provides 3D cylinder fitting from
2D points. A 3D cylinder is fitted from
multiple sets of 2D image points. The sets
of image points can come from different
cameras or from a single camera. The 3D
cylinder fitter computes the pose of the
cylinder which minimizes the sum squared
image error with respect to the given 2D
image points from calibrated camera(s).
VisionPro 3D-Locate Developer’s Guide 53

3D Shapes, Graphics and Transforms 2
The sample code installed in
%VPRO_ROOT%\samples3D\Programming\Runtime\Fitting contains a Visual Studio
2010 solution with several shape fitting examples. Copy the contents to a folder where
you have write permission before you execute it.

Cog3DLineFitterUsing2DPoints This class provides 3D line fitting from 2D
points. A 3D line is fitted from multiple sets
of 2D image points. The sets of image
points can come from different cameras or
from a single camera providing multiple
views of the line. The 3D line fitter
computes the pose of the line which
minimizes the sum squared image error
with respect to the given 2D image points
from calibrated camera(s).

Cog3DLineFitterUsing3DPoints This class provides 3D line fitting from 3D
points. The 3D line fitter computes the
pose of a 3D line based on the specified
3D input points. The fitting technique is
controlled by the
Cog3DRobustFitParameters. See the
Remarks section of the
Cog3DRobustFitParameters enum and
the Cog3DRobustFitParameters class for
details.

Cog3DPlaneFitterUsing3DPoints This class provides 3D plane fitting from
3D points. The 3D plane fitter computes
the pose of a 3D plane based on the
specified 3D input points. The fitting
technique is controlled by the
Cog3DRobustFitParameters. See the
Remarks section of the
Cog3DRobustFitParameters enum and
the Cog3DRobustFitParameters class for
details.

Class Description
54 VisionPro 3D-Locate Developer’s Guide

3
3D Calibration Tools
This chapter describes 3D calibration, a process that establishes a mathematical
relationship between the 2D coordinate system associated with the pixels in an acquired
image and a 3D coordinate system associated with the physical world in front of the
camera.

This chapter contains the following sections:

• Some Useful Definitions on page 56 defines some terms that you will encounter as
you read this chapter.

• 3D Calibration Basics on page 58 provides a review of the coordinate spaces and
transformations associated with 3D camera calibration.

• 3D Camera Calibration on page 61 provides a detailed discussion of the
procedure, including Cognex’s recommended best practices, for performing 3D
camera calibration.

• Hand-Eye Calibration on page 71 contains an overview of the coordinate spaces
used in hand-eye calibration, and describes the basic techniques for performing
hand-eye calibration.
VisionPro 3D-Locate Developer’s Guide 55

3D Calibration Tools 3
Some Useful Definitions
This section defines some terms and concepts used in this chapter.

3D Pose The position and orientation of a 3D coordinate system within another 3D coordinate
system. A pose comprises 6 degrees of freedom: X-translation, Y-translation,
Z-translation, X-rotation, Y-rotation, and Z-rotation.

3D Position The location of a 3D point within a 3D coordinate system. A 3D position is represented
by an x-value, y-value, and z-value.

3D-Calibrated
Camera

A camera for which a 3D calibration (both extrinsic and intrinsic) has been computed.

Raw2D Space Left-handed 2D coordinate space based on the pixels in an acquired image.

Camera3D
Space

A right-handed 3D coordinate space with its origin at the camera’s optical convergence
point, X- and Y-axes that are approximately parallel to and oriented in the same direction
as the Raw2D coordinate system X- and Y-axes, and a Z-axis that extends along the
optical axis away from the camera.

Camera2D
Space

The plane at Z=1 of Camera3D Space. When Camera2D space is viewed from the
camera (Z < 1 and in the direction of the Camera3D positive Z axis) then Camera2D
space appears as a left-handed 2D coordinate system. When Camera2D space is
viewed in the direction of the Camera3D negative Z axis from a point in front of the
camera (where Z > 1), then Camera2D Space appears as a right-handed 2D coordinate
system.

Phys3D Space A right-handed 3D coordinate space initially defined by the fiducial mark on the
calibration plate specified as having an origin-defining pose-type used to perform 3D
calibration. This space can be defined by any coordinate frame in physical space.

Hand3D Space A right-handed 3D coordinate space defined by the end-effector on a robot. The
position of the robot hand is reported by the robot controller as the pose of Hand3D
space in RobotBase3D space. (Some robot manufacturers and integrators refer to this
as tool space.)

RobotBase3D
Space

A right-handed 3D coordinate space defined by the robot manufacturer or integrator. It
is typically associated with the robot base (the part of the robot that is rigidly fixed to the
physical world).
56 VisionPro 3D-Locate Developer’s Guide

3 3D Calibration Tools
Checkerboard
Feature
Extractor

Software that locates all of the grid vertices in an image of a Cognex checkerboard
calibration plate, along with the fiducial features that define the plate origin. The feature
extractor constructs a list of correspondence pairs which associate the location in the
image of each feature with its physical position, based on the physical grid pitch value
that you supply.

Correspondence
Pair

The physical coordinates and image coordinates of a given calibration plate vertex.

Viewset A set of n images acquired simultaneously from n cameras viewing the same scene from
different locations. Multiple viewsets of a calibration plate are used to perform 3D
camera calibration.
VisionPro 3D-Locate Developer’s Guide 57

3D Calibration Tools 3
3D Calibration Basics
3D camera calibration establishes an accurate correspondence between 2D locations
in an image from a 3D calibrated camera and a 3D location in physical space in front of
the camera. This correspondence takes the form of a linked series of transformations
between a pair of 2D coordinate spaces and a second pair of 3D coordinate spaces.

Note For more detailed information, see the section 3D Calibration
Coordinate Spaces on page 20.

Figure 27 shows all four of the spaces, and their associated transformations, generated
during 3D camera calibration.

 Figure 27. Spaces and transformations computed by 3D camera calibration

+Y

+X

Raw2DfromCamera2D
is intrinsic part of
3D calibration

Camera 2DfromCamera3D
projects from 3D Camera
space to 2D Camera space

Camera3DfromPhys3D
is extrinsic part
of 3D calibration

Camera3D
space

Phys3D
space

Camera2D space

Raw2D space
58 VisionPro 3D-Locate Developer’s Guide

3 3D Calibration Tools
Table 3 defines and describes the spaces shown in Figure 27.

Table 3. 3D calibration coordinate spaces

Space Description Origin Units Handedness

Raw2D Raw 2D image
space defined
by acquired
pixels.

Upper-left
corner of
upper-left pixel
in acquired
image.

Pixels. Left-handed.

Positive-X extends
to the right,
positive-Y extends
down.

Camera2D Undistorted 2D
space that
removes
effects of
optical
distortion and
pixel aspect
ratio.

0,0,1 in
Camera3D
space.

N/A Right-handed if
viewing in front of
the camera.

X- and Y-axes
parallel to and in
the same direction
as Camera3D X-
and Y-axes

Camera3D Idealized 3D
space with
Z-axis
corresponding
to optical axis
of camera.

Point of optical
convergence
within lens.

Physical
units.

Right -handed.

X- and Y-axis
roughly parallel to
Raw2D X- and
Y-axis. Z-axis
extends away from
front of camera
along optical axis.

Phys3D 3D physical
space.

Defined by
fiducial mark
on calibration
plate.

Physical
units.
Initially
defined by
calibration
plate grid
spacing
and
spacing
between
elevated
plate
views.

Right handed.

X- and Y-axis
aligned to
calibration grid,
Z-axis normal to
plate extending
away from the
camera.
VisionPro 3D-Locate Developer’s Guide 59

3D Calibration Tools 3
It is the first and last spaces shown in Table 3 that enable 3D vision: the mapping of
points from the Raw2D space of an acquired image to rays in Phys3D space, and points
in Phys3D space to points in Raw2D space.
60 VisionPro 3D-Locate Developer’s Guide

3 3D Calibration Tools
3D Camera Calibration
VisionPro 3D-Locate allows you to generate a 3D calibration for a single camera or for
all the cameras in your production environment simultaneously.

The image-based method of calibration allows you to pass all the acquired viewsets of
the calibration plate directly to the Cog3DCameraCalibrator.Execute() method, along
with information about the heights and pose types of each viewset.

VisionPro 3D-Locate also supports a feature-based method where you use
checkerboard feature extractor classes explicitly to locate all the grid vertices in the
viewsets of the plate along with the fiducial features the define the plate origin. The
feature extractor constructs a list of correspondence pairs which associate the location
in the image of each feature with its physical position, based on the physical grid pitch
value that you supply. You then pass the correspondence pairs instead of image sets to
the Cog3DCameraCalibrator.Execute() method.

Note The calibration sample code installed in
%VPRO_ROOT%\samples3D\Programming\Setup\Calibration
includes examples of calibration using both the images and
features. Copy the contents to a folder where you have write
permission before you execute it.

Cognex recommends that camera calibration be performed with a Cognex calibration
plate. If you are performing camera calibration using your own custom calibration plate,
you must use feature-based calibration, which is illustrated in the sample code for
calibration.

Note Failure to use a precisely manufactured calibration plate will result in
poor calibration results. In particular, do not attempt to perform
calibration using a calibration plate that you print using a laser or
inkjet printer.

Perform the following steps to perform camera calibration:

1. Position, focus, and securely mount the cameras required for your application.

See the topic Camera Positioning on page 62 for more information.

2. Acquire a series of viewsets of the calibration plate, where the images in each
viewset have been acquired simultaneously. A viewset contains images from the
cameras of the calibration plate in a given pose. You must acquire a minimum of
four image sets.

See the topic Acquiring the Viewsets on page 63 for more information.

3. For each image in each viewset, extract the correspondence pairs of 2D image and
3D physical locations of each plate vertex.
VisionPro 3D-Locate Developer’s Guide 61

3D Calibration Tools 3
4. Pass all of the extracted correspondence pairs, along with information about the
plate pose type for each viewset, to the calibration function. You do not need to
specify the pose itself, only the type.

5. Measure the accuracy of the computed calibration and, optionally, establish a
camera calibration validation baseline.

See the topic Assessing the Calibration Quality on page 69 for more information.

Camera Positioning
Before attempting to calibrate your cameras, define a 3D working volume sufficiently
large enough to contain the objects that your application is locating or measuring,
allowing for the expected variation in object position.

Position your cameras so that each camera can view the entire working volume. This
requires that you select optics that provide a wide enough field of view and sufficient
depth of field that well-focused images of objects placed anywhere in the working
volume can be obtained by all cameras.

Note There is no requirement that all cameras have the same image size,
focal length, or other configuration, with one exception: All cameras
must have the same handedness. If your configuration uses any
mirrors, then the same number of mirrors modulo 2 must be in the
optical paths of each camera. You cannot perform 3D camera
calibation if some cameras are mirrored but others are not.

Once you have selected the cameras and optics, and then positioned and focused the
cameras, you must perform the following steps before acquiring the viewsets:

• Lock the positions and orientations of the cameras with respect to each other. If
there is any movement of any camera relative to any other camera during or after
calibration, the calibration will become invalid or inaccurate.

• Lock the focus, focal length (for a zoom lens), and aperture of all cameras. If the
focus, aperture, or focal length changes for any camera during or after calibration,
the calibration will become invalid or inaccurate. Note that this requirement means
that you must establish system lighting configuration before calibration; you will not
be able to adjust image exposure by changing the lens aperture after calibration.

• Lock the position and orientation of all reflective surfaces (mirrors) or refractive
bodies (filters or prisms) in the optical path of any camera. Keep in mind that the
optical characteristics of any transparent filters, guards, covers, or windows in the
optical path may affect the calibration accuracy.
62 VisionPro 3D-Locate Developer’s Guide

3 3D Calibration Tools
Acquiring the Viewsets
To successfully perform 3D camera calibration, you must acquire at least four viewsets
that show a standard Cognex checkerboard calibration plate at four specific poses. For
best accuracy, Cognex recommends that you acquire an additional five viewsets, also
with a calibration plate at specific poses.

Note The four required plate poses are approximate; you do not need to
precisely position the plate. The five optional plate poses, however,
require that you position the plate with very precise relative heights.

You can acquire three types of viewsets during 3D calibration:

• Viewsets of tilted, rotated plates. Four viewsets of this type are required to perform
calibration. This pose type is called
Cog3DCalibrationPlatePoseTypeConstants.PoseTilted.

• Z-offset elevated viewsets. These viewsets are optional, but acquiring this type of
viewset improves calibration accuracy. This pose type is called
Cog3DCalibrationPlatePoseTypeConstants.PoseElevated.

• A single viewset that defines Phys3D space. You can position the calibration plate
so that its origin fiducial is at the position that you want to use to define Phys3D
space or you can identify one of the other viewsets as the origin viewset. In all cases
you can specify a different origin for 3D physical space after calibration is
complete. A single viewset that defines the origin of Phys3D is required to perform
calibration. This pose type is called
Cog3DCalibrationPlatePoseTypeConstants.PoseDefineWorldCoord.

Each type of viewset is discussed later in this chapter. Keep the following guidelines in
mind when acquiring all viewsets:

• The calibration plate surface should lie within the working volume at all times.

• For single-camera calibration, all images in a viewset must include well-focused
views of all calibration plate features. For multi-camera calibration, if some images
in some viewsets do not include calibration features, it is generally still possible to
compute an accurate calibration. For best results, however, every image in every
viewset should include well-focused views of all calibration plate features.

• Depending on how your cameras are positioned, some images in some viewsets
may contain no image features. In general, this does not cause a problem for
camera calibration, as long as a given camera shares a view of at least some plate
poses with another camera.

• Cognex strongly recommends that you save all acquired viewset images to a file
archive so that you can experiment with different calibration options without
needing to reacquire the images.
VisionPro 3D-Locate Developer’s Guide 63

3D Calibration Tools 3
Acquiring the Tilted Viewsets (Required)
To acquire the Cog3DCalibrationPlatePoseTypeConstants.PoseTilted viewsets, follow
these steps:

1. Establish an axis of rotation through the working volume. The axis of rotation should
be approximately the average of the optical axes of the cameras that you are
calibrating, and it should be approximately centered within the working volume, as
shown in Figure 28.

 Figure 28. Rotation axis for tilted viewsets

2. Place the calibration plate so that the axis passes through the plate origin, the plate
is facing toward the cameras, and the plate is tilted at about 20° from a plane normal
to the axis, as shown in Figure 29, and acquire the first viewset.

 Figure 29. Tilting the calibration plate
64 VisionPro 3D-Locate Developer’s Guide

3 3D Calibration Tools
3. Rotate the plate about the axis by 90° and acquire another viewset. Repeat the
rotation twice more, acquiring a viewset at 180° and 270°. Figure 30 shows the
acquisition of all four of the required tilted viewsets:

 Figure 30. Rotating the calibration plate

Elevated Viewsets (Optional)
Acquiring Cog3DCalibrationPlatePoseTypeConstants.PoseElevated viewsets is not
required to perform 3D camera calibration, but acquiring these viewsets will result in a
more accurate calibration.
VisionPro 3D-Locate Developer’s Guide 65

3D Calibration Tools 3
To acquire the elevated viewsets, follow these steps:

1. Using the same axis established for the tilted viewsets, place the calibration plate
precisely normal to this axis, centered within the working volume, and acquire a
viewset, as shown in Figure 31.

 Figure 31. Anchor plate for elevated viewsets.

2. Using an accurate positioning spacer, acquire viewsets of the same plate at evenly
spaced positions above and below the first viewset, as shown in Figure 32. You
must precisely record the actual spacing between each plate, and the plate must
be kept parallel to the first elevated viewset pose.

 Figure 32. Elevated viewset poses
66 VisionPro 3D-Locate Developer’s Guide

3 3D Calibration Tools
World Origin Viewset (Required)
To successfully perform 3D camera calibration, one (and only one) of the viewsets
provided to the calibration function must define Phys3D space
(Cog3DCalibrationPlatePoseTypeConstants.PoseDefineWorldCoord). You can use any
one of the viewsets described above as the origin viewset, but in most cases you will
create a dedicated world origin viewset by precisely fixing the calibration plate so that
its origin corresponds to a known location.

Note If you supply any elevated pose type viewsets, the origin viewset
must be one of the elevated viewsets, since the elevated pose offset
spacing is relative to the Phys3D origin viewset.

Computing Correspondence Pairs
The standard Cognex checkerboard calibration plate establishes a 3D physical
coordinate system. Each plate vertex has a known position within that coordinate
system, based on the plate vertex spacing and the location of the origin fiducial marks.

Each plate vertex also has a corresponding position within the raw 2D image coordinate
system of an image acquired of the plate. The function
Cog3DCheckerboardFeatureExtractor.
Execute() automatically extract calibration plate vertex locations and create a vector of
correspondences between 3D plate locations and 2D image locations. These
correspondences are stored as a Cog3DCrspFeaturesCollection object.

You must call this function for each image in each viewset.

Calibrating
After collecting all of the required correspondence pairs from all of the viewsets, you
calibrate by calling a single function: Cog3DCameraCalibrator.Execute().

VisionPro 3D-Locate Calibration
In VisionPro 3D-Locate, Cog3DCameraCalibrator.Execute() generates a
Cog3DCalibrationResult that you use to map points in Raw2D Space into Phys3D
Space.

The Execute() method accepts:

• The viewsets you acquired or the set of Cog3DCrspFeaturesCollection feature
correspondences,

• The Cog3DScalarCollection object of elevated/tilted plate poses or the object of
specified plate poses
VisionPro 3D-Locate Developer’s Guide 67

3D Calibration Tools 3
• A Cog3DCalibrationPlatePoseTypeConstants describing the plate poses.

Intrinsic and Extrinsic Calibration Data
The result of calling Cog3DCameraCalibrator.Execute() is a
Cog3DCalibrationResult object that contains a list of Cog3DCameraCalibration
objects that contain the 3D camera calibration for each camera being calibrated, as well
as information about the measured poses of the cameras relative to the calibration
plates and residual error information.

Each Cog3DCameraCalibration object contains individual transformation objects for
each of the three transformations described in the section Some Useful Definitions on
page 56:

• Cog3DCameraCalibration.Raw2DFromCamera2D describe the camera
intrinsics.

• Cog3DCameraCalibration.Camera3DFromPhys3D gives the camera extrinsics
(the 3D pose of the camera in Phys3D space).

• Cog3DCameraCalibration.MapPointFromPhys3DToRaw2D and
Cog3DCameraCalibration.ComputeRayPhys3DFromPointRaw2D() transform
between Phys3D space and Raw2D space.

Specifying a New 3D Physical Space
You must specify one viewset that defines the origin of your Phys3D space when you
call Cog3DCameraCalibrator.Execute() . The physical pose of the calibration plate
fiducial marks (shown in the section Calibration Plate Requirements on page 16)
determines the origin of Phys3D space. All 3D measurements and poses are reported
in this space.

The 3D camera calibration tool supports two techniques that you can use to alter
Phys3D space origin after calibration.

• If you wish to redefine Phys3D space based on a new calibration plate pose, simply
acquire a viewset containing the plate at the desired pose, then call the overload of
Cog3DCameraCalibrator.Execute() that allows you to provide precomputed
camera intrinsics, supplying the camera intrinsics from the original calibration.

• You can create a new Cog3DCameraCalibration object with a Phys3D space that
you define by supplying a 3D rigid transformation that specifies the pose of the new
space in the current space (you can also define the new space based on the
composition of the current space with a specified 3D rigid transformation) by calling
the function Cog3DCameraCalibration.CloneWithNewCamera3DFromPhys3D,
or Cog3DCameraCalibration.CloseComposeWithPhys3DFromAny3D.
68 VisionPro 3D-Locate Developer’s Guide

3 3D Calibration Tools
Assessing the Calibration Quality
There are two methods that you can use to measure the accuracy of a 3D camera
calibration.

• The calibration function returns residual error data that indicates how well the
computed calibration maps between the observed physical and image points.

• A separate calibration validation tool allows you to validate an existing calibration
at any time by simply acquiring a single viewset.

Note Cognex strongly recommends that you use the calibration validation
tool. Using the calibration validation tool allows you to establish an
accuracy baseline at calibration time, then easily track the
calibration accuracy over time.

Interpreting Residual Error Data at Calibration
Time
3D camera calibration takes as input collections of correspondences between 3D
physical locations and 2D image locations. The computed calibration minimizes the
least squares error between the two sets of points. The result of mapping a given 2D or
3D point through the computed calibration is never exactly the same as the
corresponding point. This difference is the residual error.

The Cog3DResiduals class is a container that holds residual error statistics for a given
set of point pairs. During 3D camera calibration, the generates two types of residual
statistics:

• 3D residual statistics are based on the 3D distance between the physical plate
vertex positions and the expected vertex positions in 3D physical units.

• 2D residual statistics are based on the 2D distance between image vertex positions
and the expected vertex positions in 2D image units (pixels).

For both 2D and 3D residual error statistics, the tool generates the following objects:

• Statistics for all plate poses and all cameras

Cog3DCameraCalibrationResult.OverallResidualsRaw2D and
Cog3DCameraCalibrationResult.OverallResidualsPhys3D

• Statistics for any combination of a single plate pose (i) and a single camera (j):

Cog3DCameraCalibrationResult.ResidualsRaw2D[i, j]
and
Cog3DCameraCalibrationResult.ResidualsPhys3D[i,j]
VisionPro 3D-Locate Developer’s Guide 69

3D Calibration Tools 3
The global residual error measures provide an overall measure of the accuracy of the
calibration, while the plate- and camera-level statistics let you identify potential optical
or mechanical issues with a particular camera or plate pose.

Using the Calibration Validation Tool
3D-Locate includes a stand-alone tool that you can use to compute a measure of the
overall accuracy of an existing 3D camera calibration. The camera calibration validation
tool takes the following data as input:

• 3D camera calibration objects for all the calibrated cameras.

• Correspondence pairs from one or more viewsets of a calibration plate. For best
results, you should use the same calibration plate for validation that was used to
compute the original calibration, but there is no requirement that the plate poses or
viewsets used for calibration validation match those used for the original calibration.

Note If you intend to compare the results of validations performed over
time, you should use the same plate poses for each validation.

The camera calibration validation tool computes a global RMS measure of the accuracy
of the calibration. It computes this results in the following two ways:

• It validates the calibration using the extrinsic parameters computed during the
original calibration.

• It recomputes the camera extrinsic parameters using the validation plate poses,
then validates the calibration using the newly computed extrinsics.

By comparing these two results, you can determine if increasing error is due to extrinsic
changes (movement of cameras relative to each other) or intrinsic changes (focus or
aperture changes).

Because you can validate an existing calibration at any time, and because there are no
constraints on the plate poses that you use for validation, you can easily include
calibration validation as part of the regular maintenance of a 3D vision system.
70 VisionPro 3D-Locate Developer’s Guide

3 3D Calibration Tools
Hand-Eye Calibration
Hand-eye calibration provides a method that lets you accurately map 3D locations from
a 3D calibrated camera’s Camera3D space to a physical 3D space known to a robot.
This enables the vision system to report 3D poses of objects in a 3D physical coordinate
system known to the robot. Hand-eye calibration can be done for systems using a single
camera or multiple cameras. If multiple cameras are used, hand-eye calibration can be
done simultaneously for all cameras if the images for all cameras can be acquired at the
same time at each station.

Figure 33 shows these two 3D spaces and the transformation that are produced by
hand-eye calibration.

 Figure 33. Transformation produced by hand-eye calibration

The Camera3D space shown in Figure 33 represents one end of the linked series
standard 3D camera calibration coordinate spaces and transformations. Camera3D
space can be mapped to Camera2D space which can be mapped to Raw2D space.

Note The hand-eye calibration tool allows you to use a separately
generated 3D camera calibration to provide the intrinsic part of the
calibration. In general, using a separate 3D camera calibration
procedure will produce a more accurate hand-eye calibration.

Camera3DFromHand3D
Maps 3D points from Hand3D
space to Camera3D space

Hand3D space

Camera3D space
VisionPro 3D-Locate Developer’s Guide 71

3D Calibration Tools 3
Figure 34 shows all of the coordinate spaces and transformations associated with
hand-eye calibration. Transformation ➀ is provided by the robot; transformation ➁ is
the hand-eye calibration transformation, transformations ➂ and ➃ are standard 3D
camera calibration transformations.

 Figure 34. Spaces and transformations associated with hand-eye calibration

Stationary Camera/Moving Plate Calibration
The diagrams and discussion in the preceding section describe hand-eye calibration in
the case where the camera is mounted on the robot’s moving hand and the calibration
plate is stationary. Hand-eye calibration is also supported for systems in which the

2 1
4

5

3

2

1

3

4

Hand3D space from RobotBase3D space (supplied by robot)

Camera3D space from Hand3D space (result of hand-eye calibration)

Camera2D space from Camera3D space (projection)

Raw2D space from Camera2D space (intrinsic part of original camera
calibration)

5 RobotBase3D space from CalPlate3D space (result of hand-eye calibration)
72 VisionPro 3D-Locate Developer’s Guide

3 3D Calibration Tools
camera is stationary and the calibration plate is attached to the robot hand. In this
second case, the computed hand-eye calibration transformation maps points from the
Camera3D to the RobotBase3D space, as shown in Figure 35.

 Figure 35. Hand-eye calibration result for stationary camera/moving plate case.

RobotBase3DFromStationaryCamera3D
Maps 3D points from Camera3D
space to RobotBase3D space

Camera3D space

RobotBase3D space
VisionPro 3D-Locate Developer’s Guide 73

3D Calibration Tools 3
The full outputs for stationary camera/moving plate hand-eye calibration are shown in
Figure 36.

 Figure 36. Coordinate spaces and transformations associated with stationary
camera/moving plate hand-eye calibration.

Hand-Eye Calibration Procedures
The procedure for performing hand-eye calibration differs slightly for the moving
camera/stationary plate and stationary camera/moving plate cases. For both types of
calibration, however, you must decide how to compute the camera intrinsic parameters:

• You can use the same data set acquired for hand-eye calibration to calibrate the
camera(s) first and obtain the camera intrinsics.

• You can perform a separate 3D camera calibration before performing hand-eye
calibration. This method is more complex, but it will produce a more accurate
hand-eye calibration.

2

1

5

4

3

2

1

3

4

Hand3D space from RobotBase3D space (supplied by robot)

RobotBase3D space from Camera3D space (result of hand-eye calibration)

Camera2D space from Camera3D space (projection)

Raw2D space from Camera2D space (intrinsic part of camera calibration)

5 CalPlate3D space from Hand3D space (result of hand-eye calibration))
74 VisionPro 3D-Locate Developer’s Guide

3 3D Calibration Tools
Note One additional type of hand-eye calibration is also supported: The
hand-eye calibration tool allows you to provide the camera extrinsics
for each calibration input station. In this case, you must have
performed a 3D camera calibration and you must use this calibration
to compute the extrinsics (the poses of the cameras with respect to
the calibration plate) yourself.

In both cases, you perform the calibration by supplying specific input data generated at
a number of different robot stations. The inputs for both moving camera/stationary plate
and stationary camera/moving plate are shown in Figure 37.

 Figure 37. Per-station inputs

Accurate hand-eye calibration depends on the motion between the stations. The motion
between stations should include the largest possible rotation that keeps the calibration
plate in the FOVs of the cameras. The axis of rotation is also critically imporant in
providing an accurate hand-eye calibration. At a minimum, hand-eye calibration should
include stations where the axes of rotation are about 3 orthogonal axes. One way to do
this is to use three sets of stations, where the first station’s axis of rotation is about the
robot’s X-axis, the second about the robot’s Y-axis, and the third about the robot’s
Z-axis.

The specific steps required to perform hand-eye calibration for both moving
camera/stationary plate and stationary camera/moving plate hand-eye calibration are
listed below.

Calibration plate
vertex locations
from acquired 2D
image

1

3D transformation giving
the pose of Hand3D space
in RobotBase3D space.

2

Hand3D
space

RobotBase3D space

Moving plate/stationary cameraMoving camera/stationary plate

Calibration plate
vertex locations
from acquired 2D
image

1

3D transformation giving
the pose of Hand3D space
in RobotBase3D space.

2

Hand3D
space

RobotBase3D space
VisionPro 3D-Locate Developer’s Guide 75

3D Calibration Tools 3
Moving Camera/Stationary Plate Calibration
1. If you are performing a separate 3D camera calibration for your camera, perform

that now. Note that whatever lens, focal length, focus setting, and aperture that you
use for 3D camera calibration must not be changed before or during hand-eye
calibration; make sure that the optical configuration that you use for 3D camera
calibration is suitable for your hand-eye configuration. You may use the same data
set acquired for hand-eye calibration to calibrate the camera and obtain the camera
intrinsics.

2. Rigidly mount the camera to the robot end-effector arm. There is no requirement
that the camera be mounted to the outermost robot arm segment, as long as the
robot can provide the rigid 3D transformation between the robot’s gripper or
end-effector and the link to which the camera is mounted.

3. Fix the cameras lens, focus, and aperture. In most cases, a positive mechanical
lock should be used to prevent any change in the optical configuration associated
with the camera.

Note Changing the cameras focus or aperture during or after calibration
will invalidate the calibration.

4. Mount the calibration plate. There is no requirement for the plate pose, other than
that it cannot move during hand-eye calibration.

5. Move the robot arm so that the camera’s field of view is filled by the calibration plate.
Ensure that all plate vertices can be viewed in focus by the camera.

6. Acquire an image of the calibration plate. Record the 3D pose of the robot hand
(specifically the link to which the camera is attached) in 3DRobotBase space (this
information is available for the robot).

7. Repeat steps 5 and 6 at least two times, making sure that the motion of the robot
hand meets the requirements listed in the section Motion Requirements on page 77.
For best results, you should repeat steps 5 and 6 at least 9 times, acquiring plate
images from at least ten stations.

8. Extract the feature correspondence pairs from all of the images acquired in step 6
using the function Cog3DCheckerboardFeatureExtractor.Execute().

9. Call the Cog3DHandEyeCalibrator.Execute() method with the feature
correspondence pairs, the corresponding 3D hand poses, and the 3D camera
calibration intrinsics computed in step 1.
76 VisionPro 3D-Locate Developer’s Guide

3 3D Calibration Tools
Stationary Camera/Moving Plate Calibration
1. If you are performing a separate 3D camera calibration for your camera, perform

that now. Note that whatever lens, focal length, focus setting, and aperture that you
use for 3D camera calibration must not be changed before or during hand-eye
calibration; make sure that the optical configuration that you use for 3D camera
calibration is suitable for your hand-eye configuration.

2. Rigidly mount the camera so that it can view the working area of your robot.

3. Fix the cameras lens, focus, and aperture. In most cases, a positive mechanical
lock should be used to prevent any change in the optical configuration associated
with the camera.

Note Changing the cameras focus or aperture during or after calibration
will invalidate the calibration.

4. Mount the calibration plate to the robot arm. In most cases, you will place the
calibration plate in the robot gripper or end-effector. You do not need to specify the
rigid transform between the robot end-effector (Hand3D space) and the calibration
plate (CalPlate3D); this transformation is computed during calibration.

5. Move the robot arm so that the camera’s field of view is filled by the calibration plate.
Ensure that all plate vertices can be viewed in focus by the camera.

6. Acquire an image of the calibration plate. Record the 3D pose of the robot hand
(specifically the link to which the plate is attached) in 3DRobotBase space (this
information is available for the robot).

7. Repeat steps 5 and 6 at least two times, making sure that the apparent motion of
the calibration plate meets the requirements listed in the section Motion
Requirements on page 77. For best results, you should repeat steps 5 and 6 at least
9 times, acquiring plate images from at least ten stations.

8. Extract the feature correspondence pairs from all of the images acquired in step 6
using Cog3DCheckerboardFeatureExtractor.Execute()

9. Call the Cog3DHandEyeCalibrator.Execute() method with the feature
correspondence pairs, the corresponding 3D hand poses, and the 3D camera
calibration intrinsics computed in step 1.

Motion Requirements
For all types of hand-eye calibration, the following requirements must be met:

• At least three separate sets of input data (stations) must be provided.

• The plate should be positioned so that the plate fills the camera’s field of view and
all or substantially all of the plate vertices are in focus.
VisionPro 3D-Locate Developer’s Guide 77

3D Calibration Tools 3
• Between any two adjacent stations, there must be significant rotation of the
calibration plate with respect to the camera. In general, larger rotations provide
better results than smaller rotations.

• The rotation between any two adjacent stations may not be exactly 180°

• At least two of the axes of rotation may not be parallel. For best results, none of the
axes should be parallel.

Residual Error
Like the 3D camera calibration tool, the hand-eye calibration tool can generate residual
error statistics that you can use to assess the accuracy of the calibration. Unlike the 3D
camera calibration tool, the hand-eye calibration tool does not use the calibration plate
vertex positions to compute residual error. Instead, it takes a set of evenly spaced points
from the 3D physical space defined by the calibration plate at a given input station and
maps those points to the 3D physical space defined by the calibration plate at the first
input station.

In the absence of any error, the points should be unchanged by the mapping process.
In most cases, however, the following sources of error are typically present:

• Uncorrected optical distortion

• Calibration plate defects (inconsistent vertex spacing, non-coplanarity)

• Variance between reported and actual robot hand pose.

The hand-eye calibration tool allows you to specify the number of sampling points that
are used to compute the residual error statistics, and computes the residual statistics
for all sampling points measured across all stations.
78 VisionPro 3D-Locate Developer’s Guide

3 3D Calibration Tools
.NET Classes and Sample Code
This section lists the functionality and .NET classes for calibration contained within the
Cognex.VisionPro3D namespace.

3D Camera Calibration
The following classes support camera calibration:

Sample Code
The sample code located in
%VPRO_ROOT%\samples3d\Programming\Setup\Calibration\CameraCalibration
shows how to calibrate cameras. Copy the contents to a folder where you have write
permission before you execute it.

Hand-Eye Calibration
The following classes support hand-eye calibration:

Sample Code
The sample code file located in
%VPRO_ROOT%\samples3d\Programming\Setup\Calibration\HandEyeCalibration
shows how to perform hand-eye calibration. Copy the contents to a folder where you
have write permission before you execute it.

Cog3DCalibrationFeatureExtractorBase
Cog3DCameraCalibration
Cog3DCameraCalibrationDistortionModelConstants
Cog3DCameraCalibration
Cog3DCameraCalibrationResult
Cog3DCameraCalibrationValidationResult
Cog3DCameraCalibrationValidator
Cog3DCameraCalibrationIntrinsics
Cog3DCameraCalibrator
Cog3DCheckerboardFeatureExtractor

Cog3DHandEyeCalibrator
Cog3DHandEyeCalibrationResult
Cog3DHandEyeCalibrationValidator
Cog3DHandEyeCalibrationValidationResult
VisionPro 3D-Locate Developer’s Guide 79

3D Calibration Tools 3
80 VisionPro 3D-Locate Developer’s Guide

4
Locating Objects in 3D
This chapter describes how to perform a 3D pose estimation for one or multiple objects
in an image set acquired from 3D calibrated cameras.

The sample code installed in %VPRO_ROOT%\samples3D\Programming includes
several Visual Studio 2010 solutions that demonstrate how to perform a 3D pose
estimation. Copy the contents to a folder where you have write permission before you
execute them.

This chapter contains the following sections:

• Some Useful Definitions on page 82 defines some terms that you will encounter as
you read this chapter.

• 3D Vision Applications on page 83 contains a block diagram to summarize the 3D
pose estimation process.

• 2D Part Location and 2D Feature Location on page 86 summarizes the process of
locating individual part instances in a scene and 2D feature location.

• 2D Image Feature to 3D Model Feature Correspondence on page 89 describes
how to define the correspondence objects that map 2D features to 3D features.

• 3D Models on page 96 describes how to create the 3D model of your object used
in 3D pose estimations.

• Part Correspondence on page 103 describes how to ensure your application can
perform a 3D pose estimation for multiple parts in a single scene.

• 3D Pose Estimation on page 110 describes how to perform a 3D pose estimation
using all available data.
VisionPro 3D-Locate Developer’s Guide 81

Locating Objects in 3D 4
Some Useful Definitions
This section defines some terms and concepts used in this chapter.

3D Pose The position and orientation of a 3D coordinate system within another 3D coordinate
system. A pose comprises 6 degrees of freedom: X-translation, Y-translation,
Z-translation, X-rotation, Y-rotation, and Z-rotation.

3D Position The location of a 3D point within a 3D coordinate system. A 3D position is represented
by an x-value, y-value, and z-value.

3D Pose
Uncertainty

The variation in a part’s pose from its nominal pose, for your application.

3D-Calibrated
Camera

A camera for which a 3D calibration (both extrinsic and intrinsic) has been computed.

Raw2D Space Left-handed 2D coordinate space based on the pixels in an acquired image.

Camera3D
Space

A right-handed 3D coordinate space with its origin at the camera’s optical convergence
point, X- and Y-axes that are approximately parallel to and oriented in the same direction
as the Raw2D coordinate system X- and Y-axes, and a Z-axis that extends along the
optical axis away from the camera.

Camera2D
Space

The plane at Z=1 of Camera3D Space. When Camera2D space is viewed from the
camera (Z < 1 and in the direction of the Camera3D positive Z axis) then Camera2D
space appears as a left-handed 2D coordinate system. When Camera2D space is
viewed in the direction of the Camera3D negative Z axis from a point in front of the
camera (where Z > 1), then Camera2D Space appears as a right-handed 2D coordinate
system.

Phys3D Space A right-handed 3D coordinate space initially defined by the fiducial mark on the
calibration plate specified as having an origin-defining pose-type used to perform 3D
calibration. This space can be defined by any coordinate frame in physical space.

Hand3D Space A right-handed 3D coordinate space defined by the end-effector on a robot. The
position of the robot hand is reported by the robot controller as the pose of Hand3D
space in RobotBase3D space. (Some robot manufacturers and integrators refer to this
as tool space.)

RobotBase3D
Space

A right-handed 3D coordinate space defined by the robot manufacturer or integrator. It
is typically associated with the robot base (the part of the robot that is rigidly fixed to the
physical world).

.
82 VisionPro 3D-Locate Developer’s Guide

4 Locating Objects in 3D
3D Vision Applications
The following diagram summarizes the setup and runtime tasks your 3D application
must accomplish in order to perform a successful 3D pose estimation.

 Figure 38. Application architecture (C = Number of cameras, P = Number of parts, F=
Number of 2D Features)

 2D Processing

Acquisition - Camera 0

Image

2D Part Locator

Image, 2D Part Locations[P]

2D Feature Locators

Image, 2D Feature
Locations[P*F]

Make Crsp2D3Ds

3D Processing Crsp2D3Ds[C*P*F]

Part Corresponder

Part correspondences[P]

Robust 3D Pose Estimation

(3D Pose, Residuals)[P]

Setup-Time
Data Generation

Make Crsp2D3Ds

2D Part Locators
Configurations[C]

2DFeature Locators
Configurations[C][F]

3D Model

CameraCalibs[C]

Acquisition - Camera 1

Image

2D Part Locator

Image, 2D Part Locations[P]

2D Feature Locators

Image, 2D Feature
Locations[P*F]

Camera
Configurations[C]
VisionPro 3D-Locate Developer’s Guide 83

Locating Objects in 3D 4
3D Application Architecture
VisionPro 3D-Locate API provides all the pieces you need to build a 3D application that
can determine the 3D pose of your part. Cognex recommends a 3D application
architecture similar to the architecture implemented by the VisionPro 3D-Locate Starter
Kit. This section describes that architecture and the remainder of the chapter describes
the VisionPro 3D-Locate functionality used to implement the architecture.

Setup-Time Data Generation
Your 3D application needs to support various setup-time processes or steps. The
setup-time steps produce much of the data that will be used at runtime. Cognex
suggests you provide support in your 3D application for the following setup-time steps.

• Camera Configuration (1 per camera)

Allows the setting of camera parameters like exposure time, contrast, brightness,
trigger type.

• Camera Calibration (1 per camera)

Produces a camera calibration object for each camera. Most of the tools used in
the Runtime 3D component require camera calibrations.

• Camera Calibration Validation (1)

Allows fast verification (at some time in the future) of how well your cameras are
matching your camera calibration.

• Configure 2D Part Locators (1 per camera)

2D part locators are VisionPro 2D vision tool(s) used to coarsely locate your part in
acquired images.

• Configure 2D Feature Locators (1 per feature per camera)

2D feature locators are VisionPro 2D vision tool(s) used to accurately locate
features on your part in acquired images.

• 3D Model Creation (1)

Create a 3D model (list of simple 3D shapes) that is a 3D geometric representation
of your part. Do this by manually specifying all the parameters of each 3D model
feature or by using the ModelFeatureGenerator.
84 VisionPro 3D-Locate Developer’s Guide

4 Locating Objects in 3D
2D Processing
Your 3D application needs to support the 2D location of parts and their features in
acquired images. 2D processing begins with the simultaneous acquisition of an image
from each camera. Each image is independently processed by first locating all the parts
in the image and then locating all the features on each part.

• Acquisition

Acquire an image from each camera.

• 2D Part Location

For each image, locate all the parts in it.

• 2D Feature Location

For each part in each image, locate all the features on the part.

• Crsp2D3Ds Creation

Setup-time

If you are going to use the ModelFeatureGenerator to produce the complete 3D
model, then Crsp2D3Ds need to be created.

Runtime

Crsp2D3Ds are created at runtime and then passed to the Part Corresponder.

3D Processing
Your 3D application needs to support the final 2 steps in computing 3D poses for the
parts in the acquired images.

• Part Correspondence

Determines the correspondence of parts across cameras. When you Make
Crsp2D3Ds and fill them in with 2D features, those 2D features have affinity to a
single part in one image. The part corresponder determines the correct affinity for
2D features across all the parts in all the images.

• 3D Pose Estimation

The pose estimator uses the results of part correspondence to compute the 3D
pose of a part. It uses all the Crsp2D3Ds that apply to that part plus the 3D model
plus optional robust pose estimation parameters to compute the pose that best fits
the 3D model to all the 2D features located in all the images for the part.
VisionPro 3D-Locate Developer’s Guide 85

Locating Objects in 3D 4
2D Part Location and 2D Feature Location
The purpose of the 2D part location phase of your 3D application it to coarsely locate all
the parts in the camera’s field of view. The parts only require coarse location because
the next phase is 2D feature location. In the 2D feature location phase, specific features
of the object will be located in each image with high accuracy. It is these 2D features
that are eventually used for 3D pose estimation.

2D Part Location
A 3D vision environment, once calibrated, can estimate the 3D pose of a part from 2D
images acquired from multiple cameras.

Many production environments cannot guarantee the precise placement of the object
for each inspection, so the first goal of the 3D vision application is to perform 2D part
location, locating the object in the camera’s field of view and determining its position,
rotation and angle.

VisionPro provides a variety of 2D vision tools determining the location of a part. For
example, a PMAlign tool can be configured to locate a specific pattern of known
features, as shown in Figure 39:

 Figure 39. Trained Pattern

Part Trained Pattern
86 VisionPro 3D-Locate Developer’s Guide

4 Locating Objects in 3D
Once trained, a PMAlign tool can be configured to locate single or multiple instances of
the part in the field of view, as shown in Figure 40:

 Figure 40. Multiple Parts Located

The primary challenge in the 2D part location phase of your 3D application is correctly
configuring the 2D part location tool(s) to handle the perspective distortion in the image
of your part(s) as the part(s) moves around and tilts in the camera’s field of view. For
example, configuring a PMAlign tool to accommodate some amount of perspective
distortion often requires:

• Enabling the ZoneScaleX and ZoneScaleY degrees of freedom

• Increasing the Elasticity to 5-10

The 3D application does not directly use the results of 2D part location for 3D pose
estimation. Instead, other 2D vision tools are positioned relative to the results of the 2D
part location and the results of those 2D vision tools are used in the calculation of the 3D
pose estimation. This step is known as 2D feature location.

The sample code installed in %VPRO_ROOT%\samples3D\Programming includes
several Visual Studio 2010 solutions that all perform part location. Copy the contents to
a folder where you have write permission before you execute them.

2D Feature Location
Once the coarse 2D location of a part has been determined, you use subsequent 2D
vision tools to perform 2D feature location, analyzing the part for discrete 2D features
that represent known 2D points, 2D circles and 2D line segments. The 2D features you
locate become part of the data structures that can be used to build a model of the part
or perform 3D pose estimation.
VisionPro 3D-Locate Developer’s Guide 87

Locating Objects in 3D 4
Using the same part as the previous section as an example, a 3D vision application
might use two PMAlign tools to locate two 2D point features and two Find Line tools to
locate two 2D line segments over the areas highlighted in Figure 41:

 Figure 41. Four 2D Features Found

The 2D feature location vision tools execute and generate line segments and point
results, as shown in Figure 42:

 Figure 42. Line Segments and Point Results

In images containing multiple parts, the 2D vision tools you use for 2D part is configured
to locate multiple instances of the part. Then the same set of 2D feature location vision
tools analyze the acquired images relative to each found 2D instance.

2 PMAlign tools

2 Find Line tools
88 VisionPro 3D-Locate Developer’s Guide

4 Locating Objects in 3D
2D Image Feature to 3D Model Feature
Correspondence

A key component to any VisionPro 3D application is the feature correspondence
between a single 2D feature found in an image and the 3D feature it corresponds to on
the part itself. To define this relationship, the VisionPro 3D API supports the
Cog3DCrsp2D3D class. Cog3DCrsp2D3D objects are used to create a mathematical
3D model of your part as well as determine 3D pose estimations.

An object of type Cog3DCrsp2D3D associates a 3D geometric feature with a 2D feature
found in one image of an image set. A single Cog3DCrsp2D3D object includes the
following information:

• The index of the camera from which the image was acquired

• An index of the found part instance in the field of view

• An index into the list of 3D geometric features that form the 3D model of the part

• The type of the 3D model feature

• One or more 2D points (a Cog3DVect2 object or a Cog3DVect2Collection object)
that defines the found 2D feature

A Cog3DCrsp2D3D object can be represented as shown in Figure 43:

 Figure 43. A Cog3DCrsp2D3D feature correspondence

Ultimately, your 3D vision application must create a list of Cog3DCrsp2D3D objects for
all the 2D features found on all the parts on all the images of an image set.

Cog3DCrsp2D3D objects

Camera 0 Camera 1

Physical object
VisionPro 3D-Locate Developer’s Guide 89

Locating Objects in 3D 4
At setup time, you use a list of Cog3DCrsp2D3D objects to create a 3D model, as
described in the section 3D Models on page 96. At runtime, the list of Cog3DCrsp2D3D
objects is used as an input parameter for part correspondence and 3D pose estimation
methods, as described in the sections Part Correspondence on page 103 and 3D Pose
Estimation on page 110.

The number of Cog3DCrsp2D3D objects your application generates is a product of the
following multipliers:

• The number of cameras you use

• The number of parts in the field of view, assuming all cameras can see all the parts

• The number of 2D features, per part, your application uses

For example, an application that uses two cameras and four 2D features per part on a
field of view with three parts will need to generate a total of (2 x 4 x 3) = 24
Cog3DCrsp2D3D objects.

Creation Algorithm
Your application must assign the correct values to the properties of each
Cog3DCrsp2D3D object. As your 3D application executes, a list of Cog3DCrsp2D3D
objects is typically generated as the application locates 2D features in each image, and
the process can be described with the following algorithm:

For CameraIndex=0 to numCameras-1
For PartInstanceIndex=0 to numParts-1 in Image[CameraIndex]
For 2DFeatureIndex=0 to num2DFeatures per part
{
Locate 2DFeature[2DFeatureIndex] on Part[PartInstanceIndex]

in Image[Camera]
Create and fully initialize a Crsp
Add the Crsp to the List<Crsp>
}

The sample code installed in
%VPRO_ROOT%\samples3D\Programming\Setup\ModelGeneration includes Visual
Studio 2010 solutions for creating Cog3DCrsp2D3D objects. Copy the contents to a
folder where you have write permission before you execute them.
90 VisionPro 3D-Locate Developer’s Guide

4 Locating Objects in 3D
Properties
A Cog3DCrsp2D3D object has six properties, where three relate to the 3D model
feature and three relate to the 2D feature. Figure 44 lists the properties:

 Figure 44. Properties of a Cog3DCrsp2D3D object

FeatureModel3DIndex
As you develop your 3D application, you define the order of 3D model features as they
are added to the model. For example, Figure 45 highlights the 3D model features over
an image in the order which they are created (the order is zero-based):

0: Point feature

1: Point feature

2: Edge feature

3: Edge feature

 Figure 45. 3D features of a model

FeatureModel3DIndex FeatureModel3DType Subfeature

CameraIndex PartInstanceIndex FeatureRaw2D

int Type enum

int int Object

3D Model Feature Data

2D Image Feature Data

3: Cog3DLineSeg

2: Cog3DLineSeg

0: Cog3DVect3 1: Cog3DVect3
VisionPro 3D-Locate Developer’s Guide 91

Locating Objects in 3D 4
Using this image, if you are creating a Cog3DCrsp2D3D object for the hole on the right
side of the part, you would assign it a FeatureModel3DIndex value of “1”, since it is the
second model feature the application locates.

FeatureModel3DType
The FeatureModel3DType property identifies the .NET Type of the 3D model feature.
For example, the following programming statement sets FeatureModel3DType
property for a Cog3DCrsp2D3D object named crsp that represents a line segment in
your 3D model:

crsp.FeatureModel3DType = typeof(Cog3DLineSeg);

The property must be set for one of the following supported 3D model features:

• Cog3DVect3

• Cog3DCircle

• Cog3DLineSeg

• Cog3DLine

• Cog3DCylinder

See the section 3D Models on page 96 for more information on creating a 3D model.

Subfeature
The Subfeature property defines an enumeration value of type
Cog3DSubfeatureConstants that corresponds to the found 2D feature.

• If your found 2D feature is a point, specify a Subfeature property value of
Cog3DSubfeatureConstants.Point0.

• If your found 2D feature is a line or line segment, specify a Subfeature property
value of Cog3DSubfeatureConstants.StraightEdge0.

• If your found 2D feature is a circle, specify a Subfeature property value of
Cog3DSubfeatureConstants.CircularEdge0.

Optionally, you can define a second Cog3DCrsp2D3D object for any circle to
represent the point at the circle’s center. Use a Subfeature property value of
Cog3DSubfeatureConstants.Point0 for this second Cog3DCrsp2D3D object.
92 VisionPro 3D-Locate Developer’s Guide

4 Locating Objects in 3D
If the 3D feature you want to locate is a cylinder, your application may locate up to four
2D features: 2 circular features for the start circle and end circle of the cylider and 2
edge features for the occluding edges of the cylinder, as shown in Figure 46:

 Figure 46. Features of a cylinder

For the four Cog3DCrsp2D3D objects needed to represent these features, you must
specify a different Subfeature property:

• The two straight features of the cylinder must be assigned a Subfeature property
of Cog3DSubfeatureConstants.OccludingEdge0 and
Cog3DSubfeatureConstants.OccludingEdge1, respectively.

• The two circular features of the cylinder must be assigned a Subfeature property
of Cog3DSubfeatureConstants.CircularEdge0 and
Cog3DSubfeatureConstants.CircularEdge1, respectively.

CameraIndex
The CameraIndex property indicates which camera was used to capture the image in
which these 2D features were located. If you are defining Cog3DCrsp2D3D objects
using the algorithm described in the section Creation Algorithm on page 90, set the
CameraIndex property to the current value of CameraIndex.

CircularEdge0

OccludingEdge0

OccludingEdge1

CircularEdge1
VisionPro 3D-Locate Developer’s Guide 93

Locating Objects in 3D 4
PartInstanceIndex
The PartInstanceIndex property indicates an index for each part in one image of the
image set. For scenes with only one part, the value is 0. If you are defining
Cog3DCrsp2D3D objects using the algorithm described in the section Creation
Algorithm on page 90, set the PartInstanceIndex to the current value of
PartInstanceIndex.

In applications that capture image sets of more than one part, the PartInstanceIndex
value for Cog3DCrsp2D3D objects you create will range from 0 to numParts-1 in the
current image. Your application must assign a unique value of PartInstanceIndex for
each part in each image. For example, the following figure shows an image set and lists
the values for PartInstanceIndex across both images:

 Figure 47. PartInstanceIndex Values for Three Parts

Cog3DCrsp2D3D objects where the PartInstanceIndex values do not match across
the image set are non-unified and cannot be used for 3D pose estimation.

To solve the correspondence problem when your image sets contain multiple parts, use
the part corresponder class Cog3DPartCorresponderUsing2DPoses or
Cog3DPartCorresponderUsingCrsps2D3Ds. See the section Part Correspondence
on page 103 for more information. The part correspondence class accepts non-unified
Cog3DCrsp2D3D objects and the generated 3D model and returns unified
Cog3DCrsp2D3D objects that can now be used for 3D pose estimation.

Camera 0 Camera 1

PartInstanceIndex values:

0

2

1

PartInstanceIndex values:

0

1

2

94 VisionPro 3D-Locate Developer’s Guide

4 Locating Objects in 3D
FeatureRaw2D
The FeatureRaw2D property is either a Cog3DVect2 object or a
Cog3DVect2Collection object and is used to store the coordinates of 2D points that
comprise the found 2D feature in the image.

For 2D features represented by a single point, create and initialize a Cog3DVect2
object. For all other types of results (line segments, circles, cylinders), create and
initialize a Cog3DVect2Collection object.

2D features must be in Raw2D coordinate space. Most applications run the 2D vision
tools based on a fixturing scheme that positions the 2D feature location tools based on
an initial found feature, using a tool such as the CogPMAlign tool. This allows the 2D
feature location tools to run in fixtured space, but the 3D vision tools for 3D model
creation and 3D pose estimation require the FeatureRaw2D property to be specified in
root space. Therefore, your application must map the result from fixtured coordinate
space to the root coordinate space.

Refer to the sample code in
%VPRO_ROOT%\samples3D\Programming\Setup\ModelGeneration\CreateCrsp for
sample code that transforms the results back to root coordinate space. Copy the
conents to a folder where you have write permission before you execute it. In addition,
see your VisionPro online documentation for details on coordinate spaces used before
and after using a fixturing mechanism.

Your application should set this property to an initial value of null in the event that the 2D
feature was not found, and then change the value based on the 2D vision tool result. A
list of Cog3DCrsp2D3D objects where some of the objects have a FeatureRaw2D value
of null can still be used for robust pose estimation, as described in the section 3D Pose
Estimation on page 110.
VisionPro 3D-Locate Developer’s Guide 95

Locating Objects in 3D 4
3D Models
Your 3D vision application must have a 3D model of the part for which you want to
generate a 3D pose estimate. The 3D model is a list of 3D features within Model3D
coordinate space. A 3D pose estimation method computes the 3D pose of the part
based on the location of 2D features in an image set and the part’s 3D model. Creating
a 3D model is a setup task you perform as you develop your application.

During runtime, your vision application uses the 3D model as a parameter for Part
Correspondence (see page 103) and 3D pose estimation, along with the saved camera
calibration data and the Cog3DCrsp2D3D objects generated from the runtime image
set of one or more parts.

3D Model Features
A 3D model feature can be one of the following 3D classes:

• Cog3DVect3

• Cog3DCircle

• Cog3DLineSeg

• Cog3DLine

• Cog3DCylinder

For example, Figure 48 shows an image of a part and the 3D model features that can be
used to define the 3D model:

 Figure 48. A 3D Model

Cog3DLineSeg

Cog3DLineSeg

Cog3DVect3 Cog3DVect3
96 VisionPro 3D-Locate Developer’s Guide

4 Locating Objects in 3D
You typically choose 3D features for your 3D model based on the 2D features you can
consistently locate in your image sets. You should choose stable 2D features that can
tolerate the 3D pose uncertainty of your 3D application. The following are typically good
2D features:

• Sharp, straight edges

• Circles

• Unique features that can be found regardless of rotation, scale or translation
changes

Similarly, avoid the following types of 2D features:

• Round corners

• Round edges

• Features that extrude significantly towards the camera from the rest of the part

3D Model Creation
You can create a 3D model using a list of Cog3DCrsp2D3D objects that associate the
3D features (type and index) of your part with the 2D features visible in the image set of
a single part. See the section 2D Image Feature to 3D Model Feature Correspondence
on page 89 for details on how to create Cog3DCrsp2D3D objects.

To create a 3D model of a part with the
Cog3DModelFeatureGeneratorUsingCrsp2D3Ds class, your application must
perform the following steps:

1. Capture multiple image sets of a single part.

Cognex recommends five image sets stored in an image-database file, as
described in the section Image Sets on page 98.

2. Create a List<List<Cog3DCrsp2D3D>> based on the 2D features in all the image
sets. The double-indexed list is indexed by [imageSetIndex][crspIndex].

3. Pass the Cog3DCrsp2D3D objects, along with the camera calibration data, to the
GenerateFeaturesModel3D() method of the
Cog3DModelFeatureGeneratorUsingCrsp2D3Ds class.

The GenerateFeaturesModel3D() method returns a
Cog3DModelFeatureGeneratorUsingCrsp2D3DsResults object, which is a
collection of 3D model features stored in individual
Cog3DModelFeatureGeneratorUsingCrsp2D3DsResult objects, and a collection
of the 3D poses of your part in each image set.

4. Initialize a variable of List<Object> to store your 3D model.
VisionPro 3D-Locate Developer’s Guide 97

Locating Objects in 3D 4
5. Examine the IsFound property of each
Cog3DModelFeatureGeneratorUsingCrsp2D3DsResult result to determine if this
3D model feature was found.

If the IsFound property is False, the Cog3DCrsp2D3D objects did not contain
enough data to generate a model feature candidate. You can re-examine your
image sets to reconfigure or modify the set of 2D vision tools you use to locate 2D
features.

If the IsFound property is True, use the GetResidualsValid() method and the
GetResidualsPhys3D() and GetResidualsRaw2D() methods to examine the
Cog3DResiduals residual error information.

You should examine the residual data and determine if the 3D model feature is
accurate enough for your production environment. If necessary, you can modify the
2D vision tools used to extract 2D feature information and re-run them on your
image-database of image sets in order to generate a new set 3D model features.

The sample code installed in
%VPRO_ROOT%\samples3D\Programming\Setup\ModelGeneration includes Visual
Studio 2010 solutions for 3D model feature generation. Copy the contents to a folder
where you have write permission before you execute them.

Image Sets
To create a 3D model using the 3D model feature generator, you must capture at least
one image set of a single part. If possible, however, Cognex recommends you capture
five image sets of your part, creating a List<List<Cog3DCrsp2D3D>> objects
generated from these image sets and passed to the 3D model feature generation
method. This set of Cog3DCrsp2D3D objects can be indexed as:

[image set index] [crsp index]

The five image sets you create should place the part at five different poses:

0. Place the part as close to possible to the origin of Phys3D space.

This will be treated as the identify pose. The origin of the Model3D coordinate space
(the coordinate space your 3D model features are defined in) is defined by the
Phys3D origin in this pose.

1. Place the part in the upper left corner of the field of view visible by both cameras,
and use a z-axis rotation of ~20 degrees.

2. Place the part in the upper right corner of the field of view visible by both cameras,
and use a z-axis rotation of ~45 degrees.
98 VisionPro 3D-Locate Developer’s Guide

4 Locating Objects in 3D
3. Place the part in the lower left corner of the field of view visible by both cameras,
and use a z-axis rotation of ~67 degrees.

4. Place the part in the lower right corner of the field of view visible by both cameras,
and use a z -axis rotation of ~90 degrees.

Figure 49 illustrates the five poses:

 Figure 49. Five part poses for model generation

Cognex recommends you store the image sets and the camera calibration data, which
allows you to examine the accuracy of the 2D feature extraction at any time later, or
change the vision tools you use to extract 2D feature information without the need to
acquire new image sets. Storing the image sets and the camera calibration data also
creates a record of the image sets you use for 3D model generation in the event that you
need to contact Cognex technical support.

See your VisionPro online documentation for details on saving acquired images in an
image-database file.

Lines and Line Segments
As you create the Cog3DCrsp2D3D objects to be used during 3D model feature
generation, be aware of the following issues regarding lines and line segments.

Pose 0 Pose 1 Pose 2

Pose 3 Pose 4
VisionPro 3D-Locate Developer’s Guide 99

Locating Objects in 3D 4
Line Segment Endpoints
In some vision applications a 2D vision tool configured to detect an edge might not
return valid edge results for all potential edge points. If you create a Cog3DCrsp2D3D
object based on these types of results, the Cog3DLineSeg will not accurately reflect the
desired length of the line segment you want for your 3D model.

For example, Figure 50 shows the found edge points as well as the edge points that
were not included in the best-fit line, and the length of line segment it would generate
based only on the included 2D edge points:

 Figure 50. A Cog3DLineSeg

Thus, the 3D line segment in your 3D model would be much shorter than the actual line
segment on your part.

Not included as found results

Length of found line segment
100 VisionPro 3D-Locate Developer’s Guide

4 Locating Objects in 3D
If the detected edge in your runtime image sets included different edge points, they may
correspond to a noticeably long line segment as shown Figure 51:

 Figure 51. Comparing Cog3DLineSeg features

This difference between the short line segment in your 3D model and the long line
segment found at runtime will result in higher residual errors than if the line segment
added to the 3D model accurately reflected the actual size of the edge.

If you are using a Cog3DLineSeg for any of your 3D model features, Cognex
recommends you explicitly add the endpoints of the found line segment to the
FeatureRaw2D property of any Cog3DCrsp2D3D objects you generate for 3D model
feature generation.

See the sample code installed in
%VPRO_ROOT%\samples3D\Programming\Setup\ModelGeneration for an example of
adding the endpoints of a line segment to the FeatureRaw2D property of a
Cog3DCrsp2D3D object. Copy the contents to a folder where you have write permission
before you execute it.

Edges Parallel To Baseline
Cognex recommends you create an image-database of five image sets of your part, as
described in the section Image Sets on page 98. If your production environment
prevents that possibility, however, you can still create a 3D model using a single image
set of your part.

Length of found line segment
VisionPro 3D-Locate Developer’s Guide 101

Locating Objects in 3D 4
If you are using a single image set for your 3D model creation, Cognex strongly
recommends that you position the part in front of the cameras such that the part’s line
and line segment features are not parallel to the baseline between the cameras, as
shown in Figure 52:

 Figure 52. Edges Parallel to Baseline

Any 3D model features generated from edges that are parallel to the baseline will likely
be inaccurate.

Avoid Use
102 VisionPro 3D-Locate Developer’s Guide

4 Locating Objects in 3D
Part Correspondence
The section 2D Image Feature to 3D Model Feature Correspondence on page 89
describes how to create the Cog3DCrsp2D3D objects necessary to define the feature
correspondence between a single 2D feature found in an image and the 3D feature it
corresponds to on the part itself.

Your application must assign the PartInstanceIndex property of each
Cog3DCrsp2D3D object, which specifies an index for each part in one image of the
image set. For scenes with only one part, the value is 0. In applications that capture
image sets of more than one part, the PartInstanceIndex value for Cog3DCrsp2D3D
objects you create will range from 0 to numParts-1 in the image you are working on.

Depending on the method you use to locate respective parts in each image, the
algorithm might not ensure that the same part receives the same value for
PartInstanceIndex across the image set. Cog3DCrsp2D3D objects generated this way
are known as non-unified, and Cog3DCrsp2D3D objects must be unified before they
can be used to perform a 3D pose estimation.

For example, Figure 53 shows an image set where the PartInstanceIndex value does
not match for the same part across both images:

 Figure 53. Mismatched PartInstanceIndex properties

Camera 0 Camera 1

0

1

2
0

1

2

VisionPro 3D-Locate Developer’s Guide 103

Locating Objects in 3D 4
For this image set, Figure 54 illustrates some of the Cog3DCrsp2D3D objects for
PartInstanceIndex with a value of 1 and how the RawFeature2D properties refer to
different part instances:

 Figure 54. Cog3DCrsp2D3D objects across an image set

FeatureModel3DIndex FeatureModel3DType SubfeatureCameraIndex PartInstanceIndex FeatureRaw2D

1

1

0

Camera 0 Camera 1

1 0

1

2

3

0 1

0 1

0 1

StraightEdge0

StraightEdge0

Point0

Point0

Cog3DVect3

Cog3DVect3

Cog3DLineSeg

Cog3DLineSeg

1 1 0

1

2

3

1 1

1 1

1 1

StraightEdge0

StraightEdge0

Point0

Point0

Cog3DVect3

Cog3DVect3

Cog3DLineSeg

Cog3DLineSeg

FeatureModel3DIndex FeatureModel3DType SubfeatureCameraIndex PartInstanceIndex FeatureRaw2D
104 VisionPro 3D-Locate Developer’s Guide

4 Locating Objects in 3D
Non-Unified and Unified
Any list of Cog3DCrsp2D3D objects where the PartInstanceIndex values for the same
part are not consistent across the images of the image set is non-unified, and cannot be
used for 3D pose estimation.

To generate a set of unified Cog3DCrsp2D3D objects, the VisionPro 3D API supports
the part corresponder Cog3DPartCorresponderUsing2DPoses class and
Cog3DPartCorresponderUsingCrsp2D3Ds class, both of which generate a new list of
unified Cog3DCrsp2D3D objects suitable for 3D pose estimation.

Using either the Cog3DPartCorresponderUsing2DPoses or
Cog3DPartCorresponderUsingCrsp2D3Ds class requires that you use the saved
calibration data generated earlier. See chapter 3, 3D Calibration Tools, for details on 3D
calibration. In addition, the part corresponder classes requires the defined 3D model
you created at setup time. See the section 3D Models on page 96 for details on creating
a 3D model.

Use the Execute method of Cog3DPartCorresponderUsing2DPoses class to
generate the part correspondences among different cameras. Then use the
UnifyCrsp2D3D method to generate a list of unified Cog3DCrsp2D3D objects. You can
also use the ConvertToResults method to generate a list of
Cog3DPartCorresponderUsingCrsp2D3DsResult objects.

Alternatively, use the CorrespondPartsUsingPointsAndIntersectionPoints() method
of the Cog3DPartCorresponderUsingCrsp2D3Ds class to generate a list of unified
Cog3DCrsp2D3D objects and a list of
Cog3DPartCorresponderUsingCrsp2D3DsResult objects, which contains more
information about the correspondence result. See the VisionPro 3D Class Reference for
more information.

Be aware that for applications where there is only one part in the scene or during 3D
model feature generation where there is also one part in the scene, the
PartInstanceIndex for all the Cog3DCrsp2D3D objects will be 0. Since these are unified
Cog3DCrsp2D3D objects, there is no need to run the part corresponder.

The sample code installed in
%VPRO_ROOT%\samples3D\Programming\Runtime\PoseEstimation includes Visual
Studio 2010 solutions for 3D pose estimation using part correspondence. Copy the
contents to a folder where you have write permission before you execute them.

Cog3DPartCorresponderUsing2DPoses
The part corresponder Cog3DPartCorresponderUsing2DPoses class requires the 2D
part locating results and 3D pose of the part at setup time (generating the part
corresponder), and requires the 2D part locating results at run time (running Execute
method). The 2D part locating results can be obtained by using the 2D part locating
VisionPro 3D-Locate Developer’s Guide 105

Locating Objects in 3D 4
tools (such as a PMAlign tool). See the VisionPro online documentation for more
information about the part corresponder Cog3DPartCorresponderUsing2DPoses
class.

Part Correspondence Method of
Cog3DPartCorresponderUsingCrsp2D3Ds

If there are 3D lines or 3D line segments in the 3D model, the
CorrespondPartsUsingPointsAndIntersectionPoints() method internally computes
the derived 3D model points from 3D line intersections, and the corresponding derived
2D points from 2D line intersections.

In order for a part instance to be corresponded, there must be at least two cameras
seeing that part instance, and each camera sees at least three 2D points (including the
derived 2D points corresponding to the derived 3D model points).

If this does not happen, then the part instance will not be corresponded.

Be aware that FeaturesModel3D and Cog3DCrsp2D3Ds[i].FeatureModel3DIndex for
any i must be set correctly in order to use the
Cog3DPartCorresponderUsingCrsp2D3Ds class.
Cog3DModelFeatureGeneratorUsing2D3Ds might be used to generate 3D model
features at setup time.

Outside the Field of View
if your application needs to generate the 3D pose of parts that may or may not be in the
field of view for all cameras, you can also use the part corresponder class to generate
unified Cog3DCrsp2D3D objects.
106 VisionPro 3D-Locate Developer’s Guide

4 Locating Objects in 3D
For example, Figure 55 shows a scene where six parts are presented to two cameras,
Camera 0 and Camera 1, but because of the position of the parts as well as the location
of the cameras, some of the parts are not in the field of view of both cameras.

 Figure 55. Parts Out of the Field of View

Camera 0 Camera 1
VisionPro 3D-Locate Developer’s Guide 107

Locating Objects in 3D 4
Without using part correspondence, the PartInstanceIndex values for the parts across
the scene may not correlate, as shown in Figure 56:

 Figure 56. Non-unified PartInstanceIndex values

After generating Cog3DCrsp2D3D objects for all the features in all the part instances of
both images, part correspondence can be used to assign a consistent
PartInstanceIndex property for the part instances seen in both images as well as the
parts seen by only one camera.

Figure 57 shows the unified Cog3DCrsp2D3D objects output by the part corresponder:

 Figure 57. Unified Cog3DCrsp2D3D across an image set

0

1

2

3

1

2
0

3

PartInstanceIndex property for
different parts have the same value

PartInstanceIndex property for the same
part in both images have different values

1

2

3

PartInstanceIndex property for all parts have been unified

4

5

0 2

3

108 VisionPro 3D-Locate Developer’s Guide

4 Locating Objects in 3D
The list of unified Cog3DCrsp2D3D objects can now be used for 3D pose estimation for
all the part instances.

Coverage Property
The Cog3DPartCorresponderUsingCrsp2D3DsResult result object supports the
Coverage property, which can be used to verify whether all the cameras can see every
part instance.

A Coverage value of 1.0 indicates that all cameras can see all 2D point features of the
part. See the VisionPro online documentation for more details.
VisionPro 3D-Locate Developer’s Guide 109

Locating Objects in 3D 4
3D Pose Estimation
VisionPro 3D-Locate provides a tool with several methods that estimate the 3D pose of
parts given a List<Cog3DCrsp2D3D>, a set of camera calibrations and a 3D model of
the part.

Use the methods and properties of the Cog3DPoseEstimatorUsingCrsps2D3Ds class
to generate 3D pose estimates for a single part. VisionPro 3D-Locate performs 3D pose
estimation by determining the best fit between a set of corresponded 2D image features
and a 3D model. The pose in each pose result maps 3D model features from Model3D
space to Phys3D space. A list of pose results is returned in order to handle the situation
where there are multiple pose estimations for the available 2D features.

To use a 3D pose estimation method your application must have the following data
available:

• A set of saved camera calibration data

See chapter 3, 3D Calibration Tools, for details on how to generate calibration data
for the cameras you use.

• 3D model features that define the model in Model3D space

3D pose estimation requires a minimum number of 3D model features. The
minimum number depends on the types of the 3D model features. See the VisionPro
3D Class Reference for details.

See the section 3D Models on page 96 for details on how to generate a 3D model.

• A set of unified Cog3DCrsp2D3D objects associate 2D features found in an image
set and the 3D model features

See the section 2D Image Feature to 3D Model Feature Correspondence on
page 89 for details on how to construct Cog3DCrsp2D3D objects based on the
image data from your 3D calibrated cameras.

See the section Part Correspondence on page 103 for details on how to ensure
unified Cog3DCrsp2D3D objects for scenes with multiple parts.

• A part instance index identifying the part to compute the pose estimation on.

The sample code installed in
%VPRO_ROOT%\samples3D\Programming\Runtime\PoseEstimation includes Visual
Studio 2010 solutions for generating a 3D pose estimation for an image set with a single
instance of a part and for an image set with multiple parts. Copy the contents to a folder
where you have write permission before you execute them.
110 VisionPro 3D-Locate Developer’s Guide

4 Locating Objects in 3D
Pose Estimation Strategies
The Cog3DPoseEstimatorUsingCrsps2D3Ds class supports methods for three types
of pose estimation strategies:

• Perform 3D pose estimation using all the available Cog3DCrsp2D3D feature
correspondence objects.

• Perform 3D pose estimation using Cog3DCrsp2D3D feature correspondence
objects and a set of robust estimation parameters, which can exclude outliers in the
List<Cog3DCrsp2D3D> from being considered during the pose estimation.

• Perform 3D pose estimation using an intial pose estimate and all available
Cog3DCrsp2D3D feature correspondence objects. This method is suitable for
applications with a small range of pose uncertainty. See the section Refining an
Initial Pose Strategy on page 114 for details.

Each method performs 3D pose estimation for a single part instance in your image set.
If you are capturing image sets of multiple parts, you must create a set of unified
Cog3DCrsp2D3D objects using the Cog3DPartCorresponderUsing2DPoses class or
the Cog3DPartCorresponderUsingCrsp2D3Ds class.

To generate a 3D pose estimate for multiple part instances, you call the desired
estimation method for each corresponded part by specifying a part instance index, as
shown in the following algorithm:

For PartInstanceIndex=0 to CorrespondedResults.Count
{
If Using Robust Parameters
{
Set Robust Estimation Parameters
Use Robust Pose Estimator for Part[PartInstanceIndex]

} else
{
Use All Features Pose Estimator for Part[PartInstanceIndex]

}
}

Using All Features Strategy
Use the EstimatePoseUsingAllCrsp2D3Ds() method to perform 3D pose estimation
based on the entire set of Cog3DCrsp2D3D objects you pass as an input parameter.
The method returns a Cog3DPoseEstimatorUsingCrsp2D3DsResult object which
contains a list of 3D pose results as well as other data. See the section Pose Estimation
Results on page 113 for details.
VisionPro 3D-Locate Developer’s Guide 111

Locating Objects in 3D 4
In general, the EstimatePoseUsingAllCrsp2D3Ds() method offers the faster execution
speed than the EstimatePoseUsingInlierCrsp2D3Ds() method. Use this method in
applications where you are confident about the accuracy of your 2D features.

Using Robust Parameters Strategy
Use the EstimatePoseUsingInlierCrsp2D3Ds() method to perform 3D pose estimation
using the Cog3DCrsp2D3D objects you pass as an input parameter and an additional
parameter of type Cog3DRobustPoseEstimationParametersSimple, which specifies
the robust pose estimation parameters that can be used to exclude one or more
Cog3DCrsp2D3D objects from being considered. Cog3DCrsp2D3D objects that are
excluded are recorded as outliers, while Cog3DCrsp2D3D objects that are included in
the 3D pose estimation are inliers.

You must explicitly set the properties of the
Cog3DRobustPoseEstimationParametersSimple object before calling the
EstimatePoseUsingInlierCrsp2D3Ds() method. Specifically, Table 4 lists the four
properties that determine the robust pose estimation parameters:

Table 4. Robust Pose Estimation Parameters

The method returns a Cog3DPoseEstimatorUsingCrsp2D3DsResult object which
contains a list of 3D pose results as well as other data. See the section Pose Estimation
Results on page 113 for details.

Property Description

ResidualsPhys3DMaxThreshold Sets a threshold that specifies the maximum allowed distance
between the ray of any 2D feature and its corresponding
mapped 3D model feature. If the threshold is exceeded, then
the mapped Cog3DCrsp2D3D object is considered an outlier.

ResidualsPhys3DRmsThreshold Sets a threshold that specifies the maximum allowed RMS
value of the distances between the rays of 2D features and
their corresponding mapped 3D model features. If the
threshold is exceeded, then the Cog3DCrsp2D3D objects
having the largest impact on the RMS residuals are
considered outliers.

MinNumOfFeaturesModel3DFrom
AtLeast2Cameras

Sets the minimum number of 3D model features from at least
2 cameras to be used for the pose estimation. The accuracy of
the pose estimation is improved when 2D features from
multiple cameras are used.

MinNumOfFeaturesModel3D Sets the minimum number of 3D model features to be used for
the pose estimation.
112 VisionPro 3D-Locate Developer’s Guide

4 Locating Objects in 3D
Pose Estimation Results
The 3D pose estimation methods described in Pose Estimation Strategies on page 111
return an obect of type Cog3DPoseEstimatorUsingCrsp2D3DsResult, which
describes the results of the 3D pose estimation.

Use the following methods and properties in your application to access the 3D pose
estimation results:

• GetPoseResults() method

This method returns a list of Cog3DPoseEstimatorUsing2DPointsResult objects
that encapsulate the result of a 3D pose estimation. The number of objects in the
list is an indicator of the success of the 3D pose estimation method, and will have
one of the following values:

• 0: No 3D poses were returned that met the 3D pose estimation input
parameters.

The Message property of the result will contain diagnostic information about
why no 3D poses were found.

• 1: A single 3D pose was returned that met the 3D pose estimation input
parameters.

• Greater than 1: Multiple 3D poses were returned that met the 3D pose
estimation input parameters.

Adding more unified Cog3DCrsp2D3D objects can reduce the number of 3D
poses that meet the estimation criteria.

See the section Pose Results on page 114 for information on how to access the 3D
pose estimates.

• GetIndicesOfOutlierCrsp2D3Ds() method

This method returns a list of integers indicating the indices of unified
Cog3DCrsp2D3D objects that were considered outliers and excluded from the 3D
pose estimation.

This list is always empty if you use the EstimatePoseUsingAllCrsp2D3Ds()
method.

• Message property

A string that contains diagnostic information about why the GetPoseResults()
method returned no 3D pose estimates. This property is NULL when the
GetPoseResults() method returns at least one 3D pose result.
VisionPro 3D-Locate Developer’s Guide 113

Locating Objects in 3D 4
• PartInstanceIndex property

An integer value which is a copy of the PartInstanceIndex parameter

Pose Results
The GetPoseResults() method of the Cog3DPoseEstimatorUsingCrsp2D3DsResult
object returns a list of Cog3DPoseEstimatorUsing2DPointsResult objects. See the
section Pose Estimation Results on page 113 for a description of the results returned by
this method. Ideally the list contains a single item.

A Cog3DPoseEstimatorUsing2DPointsResult object supports the following
properties to describe the 3D pose of the object in Phys3D space:

• Phys3DFromModel3D: A Cog3DTransformRigid object to describe the 3D pose
of the part in Phys3D space.

• ResidualsPhys3D: A Cog3DResiduals to describe the 3D residuals in Phys3D
space of this result.

Residual error in Phys3D space is the difference between a ray of any 2D feature
and its corresponding mapped 3D model feature.

• ResidualsRaw2D: A Cog3DResiduals to describe the 2D residuals in Raw2D
space of this result.

Residual error in Raw2D space is the difference between the found location of the
2D features in the image and the 2D locations that you would expect if you took the
3D model features and mapped them through the return pose from Phys3D to
Raw2D space using the camera calibration data.

Refining an Initial Pose Strategy
The Cog3DPoseEstimatorUsingCrsps2D3Ds class supports an additional method
that allows you to refine an existing 3D pose to perform a 3D pose estimation.

The RefinePoseUsingAllCrsp2D3Ds() method requires a Cog3DTransformRigid
object that you supply as an initial pose. In addition, the method uses all the unified
Cog3DCrsp2D3D objects and does not exclude any as outliers.

If the part pose uncertainty range is small for your application, you can use this method
to get a more accurate 3D pose estimation by providing a coarse pose (for example,
using an identity pose as the coarse pose if the part's nominal pose is identity).
114 VisionPro 3D-Locate Developer’s Guide

	Contents
	Preface
	Style Conventions Used in This Manual
	Microsoft Windows Support
	Software Diagramming Conventions
	About This Manual
	Cognex Offices
	3D Vision Overview
	Some Useful Definitions
	3D Calibration
	How Does 3D Calibration Work?
	Calibration Plate Requirements
	Single-Fiducial Checkerboard Plates
	DataMatrix Checkerboard Plates

	Plate Poses
	3D Calibration Coordinate Spaces
	Additional Spaces
	Multi-Camera Calibration

	Triangulation
	Estimating 3D Object Pose
	3D Model
	Direct 3D Pose Estimation
	Feature Correspondence
	Using Feature Correspondences for Pose Estimation
	Multi-Camera Direct 3D Pose Estimation
	Multiple Parts
	Non-Point 3D Features

	Using Feature Correspondences to Generate 3D Models

	Robot (Hand-Eye) Calibration
	Calibration Phase
	Calibration Outputs

	3D Shapes, Graphics and Transforms
	Some Useful Definitions
	3D Shapes
	3D Shape Class Architecture
	3D Shape State Type
	3D Shape Geometric Operations
	Projecting 3D Shapes for Display
	Projection Shape Representation

	3D Transformations
	3D Rigid Transforms
	3D Rotation

	3D Fitting

	3D Calibration Tools
	Some Useful Definitions
	3D Calibration Basics
	3D Camera Calibration
	Camera Positioning
	Acquiring the Viewsets
	Acquiring the Tilted Viewsets (Required)
	Elevated Viewsets (Optional)
	World Origin Viewset (Required)

	Computing Correspondence Pairs
	Calibrating
	VisionPro 3D-Locate Calibration
	Intrinsic and Extrinsic Calibration Data
	Specifying a New 3D Physical Space

	Assessing the Calibration Quality
	Interpreting Residual Error Data at Calibration Time
	Using the Calibration Validation Tool

	Hand-Eye Calibration
	Stationary Camera/Moving Plate Calibration
	Hand-Eye Calibration Procedures
	Moving Camera/Stationary Plate Calibration
	Stationary Camera/Moving Plate Calibration
	Motion Requirements

	Residual Error

	.NET Classes and Sample Code
	3D Camera Calibration
	Sample Code

	Hand-Eye Calibration
	Sample Code

	Locating Objects in 3D
	Some Useful Definitions
	3D Vision Applications
	3D Application Architecture
	Setup-Time Data Generation
	2D Processing
	3D Processing

	2D Part Location and 2D Feature Location
	2D Part Location
	2D Feature Location

	2D Image Feature to 3D Model Feature Correspondence
	Creation Algorithm
	Properties
	FeatureModel3DIndex
	FeatureModel3DType
	Subfeature
	CameraIndex
	PartInstanceIndex
	FeatureRaw2D

	3D Models
	3D Model Features
	3D Model Creation
	Image Sets
	Lines and Line Segments
	Line Segment Endpoints
	Edges Parallel To Baseline

	Part Correspondence
	Non-Unified and Unified
	Cog3DPartCorresponderUsing2DPoses
	Part Correspondence Method of Cog3DPartCorresponderUsingCrsp2D3Ds
	Outside the Field of View
	Coverage Property

	3D Pose Estimation
	Pose Estimation Strategies
	Using All Features Strategy
	Using Robust Parameters Strategy

	Pose Estimation Results
	Pose Results
	Refining an Initial Pose Strategy

